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Representable functors are a particular class of presheaves and here we try to consider
why representable functors are important in algebraic geometry. Our viewpoint is closed
to [Gro74] and [DeG80] and readers can find details there. We start our introduction to
representable functors with a question. Is the categorical structure of varieties unique? As
is well known, in classical algebraic geometry, we use regular maps to define the category
of varieties. Here, we restrict ourselves to affine varieties for simplicity.

We assume k is an algebraically closed field, and any polynomial f ∈ k[x1, ..., xn]
defines a function kn → k by (a1, ..., an) 7→ f(a1, ..., an). Given a subset I ⊆ k[x1, ..., xn]
, we correspond it with an algebraic subset (or affine variety) of kn, Z(I) = {(a1, ..., an ∈
kn)|f(a1, ..., an),∀f ∈ I}. The topology on kn with all algebraic subsets as closed subset
is called the Zariski topology. It’s easy to see algebraic subsets satisfy axioms of closed
subsets and it actually forms a topology.

Conversely, given any subset X ⊆ kn, we can associate it with an ideal I(X) = {f ∈
k[x1, ..., xn]|f(a1, ..., an) = 0,∀(a1, ..., an) ∈ X} of k[x1, ..., xn]. If g ∈ rad(I(X)), then gm ∈
I(X)⇒ g(a1, ..., an)

m = 0 ⇒ g(a1, ..., an) = 0. Hence g ∈ I(X). This fact implies I(X) is an
radical ideal. The Hilbert’s Nullstellensatz1 tells us that for any ideal J ⊆ k(x1, ..., xn), we
will have I(Z(J)) = rad(J). Then there is a bijection between the collection of algebraic
subsets of kn and the set of radical ideals of k[x1, ..., xn]. Hence, Hilbert’s Nullstellensatz
can transfer geometric information into algebraic information. Also from this theorem,
we have the following theorem:

Theorem 1. If k is an algebraically closed field andA is a k-algebra of the formA = k[x1, ..., xn]/I(X),
for some algebraic subset X iff A is reduced and finitely generated as a k-algebra. These k-algebras
are often called affine k-algebras.

Proof. “⇒”. It’s obvious for I(X) is radical.
“⇐”. A will have the form A = k[x1, ..., xn]/J where J is radical. Then I(Z(J)) =

J .

For any algebraic subsetX we can associate it with an affine k-algebra k[x1, ..., xn]/I(X).
We know affine k-algebras form a full subcategory of the category of k-algebras. To
make such correspondence above a functor, we need define the category of algebraic

1If k is any field, A is a k-algebra of finite type, then its Jacobson radical ideal coincides with its nilradical ideal, j(A) = rad(A).
Only if moreover k is algebraically closed, I(Z(J)) = rad(J) will be true. See [Bos13] Section 3.2 for more detail.
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subsets first. Naturally, we may take polynomials as morphisms between algebraic sub-
sets, because we deal with polynomial rings here. These morphisms will be called reg-
ular maps. For two algebraic subsets X ⊆ kn, Y ⊆ km, a regular map is such that
F : X → Y, (a1, ..., an) 7→ (f1(a), ..., fm(a)), where fi ∈ k[x1, ..., xn]. If g = (g1, .., gm) is
another regular map, then g = f iff gi = fi ⇔ gi − fi ∈ I(X). Hence, we can choose
fi ∈ k[x1, ..., xn]/I(X). A classical well known result tells us that:

Theorem 2. The category of algebraic subsets with regular maps as morphisms is equivalent to
the category of affine k-algebras with arrows reversed, where k is algebraically closed.

But to make affine varieties form a category, regular maps are not the only choice.
Equipped with Zariski topology, kn is actually a topological space. Hence, any algebraic
subset will naturally have the topology induced from kn. And we can let morphisms
between affine varieties be continuous maps. This also defines a category, but it will not
have the functorial property as in Theorem 2. And worse, it won’t have the polynomial
algebraic structure we need. Hence, there exists a problem how to make the categorical
structure of varieties with the algebraic information of polynomials unique.

Here, we embed the category of varieties into a larger category and let morphisms
between affine varieties meet the restrictions in the larger category, so that the regular
map can become unique. And the larger category is the category of presheaves.

Now we define an affine variety is a functor called the variety functor V : k− alg →
Sets, where k is an arbitrary commutative ring with a unit. This variety functor is deter-
mined by a series of polynomials f1, ..., fr ∈ k[x1, ..., xm]. For any k-algebra k′, we define
V (k′) = {x = (a1, ..., am) ∈ k′m|fi(a) = 0, i = 1, ..., r}. If h : k′ → k′′ is any morphism in the
category of k-algebras, V (h)(a1, ..., am) = (h(a1), ..., h(am)). This is well defined, because
fi(h(a) = h(fi(a)) = 0. The variety functor is actually a functor.

Then we consider Γ(V ) = k[x1, ..., xm]/(f1, ..., fr), we will have V (k′)
∼−→ Homk(Γ(V ), k′).

We prove it as follows:

Proof. Given an element a = (a1, ..., am) ∈ V (k′), we define a morphism σa : Γ(V ) → k′

such that σa(g) = g(a1, ..., am), g ∈ Γ(V ). σa is actually a morphism in the category of
k-algebras. Conversely, for any morphism σ : Γ(V ) → k′, we let ai = σ(x̄i), where x̄i is
the image of xi in Γ(V ). Then (a1, ..., am) ∈ V (k′). The statement above actually defines a
bijection between V (k′) and Homk(Γ(V ), k′).

If h : k′ → k′′ is any morphism in the category of k-algebras, we will have the following
commutative diagram:

V (k′) Homk(Γ(V ), k′)

V (k′′) Homk(Γ(V ), k′′)

∼

V (h) h∗

∼

If a ∈ V (k′), h(a) defines a morphism Γ(V ) → k′′ such that g 7→ g(h(a)) = g(h(a1), ..., h(am)) =
h(g(a)). Hence the bijection above is functorial.

Now we have a natural isomorphism V (−)
∼−→ Homk(Γ(V ),−), and the variety func-

tor V (−) can be identified with the representable functor Homk(Γ(V ),−).
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We consider a new variety functor W defined by g1, ..., gl ∈ k[t1, ..., tn]. A regular map
is a natural transformation φ : V → W such that φ = (φ1, ..., φn) where φi ∈ Γ(V ) =
k[x1, ..., xm]/(f1, .., fr). This regular map is obviously natural. But are all natural transfor-
mations between variety functors regular? The answer is positive.

If φ : V → W is any transformation between variety functors, we will have a natural
transformation φ : Homk(Γ(V ),−) → Homk(Γ(W ),−). The Yoneda’s lemma tells us that,
the transformation is induced by a morphism ψ : Γ(W ) → Γ(V ). We let φi = ψ(t̄i), i =
1, ..., n, and then φ = (φ1, ..., φn). To prove this equality, a = (a1, ..., am) ∈ V (k′) corre-
sponds to σa : Γ(V ) → k′, then φ(σa) = σa ◦ ψ, which corresponds to yi = σa ◦ ψ(t̄i) =
σa(φi) = φi(a). The natural transformation between variety functors must be regular
maps.

In fact, from the natural isomorphism V (−)
∼−→ Homk(Γ(V ),−) and Yoneda’s lemma,

we have the following corallay:

Corollary 3. The category of variety functors is equivalent to the category of k-algebras of finite
presentation, where k is an arbitrary commutative ring with a unit.

Now we move on to schemes. If X is an arbitrary scheme, we can identify it with its
representable functor hX = HomSch(−, X) : Schop → Sets via Yoneda’s lemma. Generally
speaking, there are four types of coverings (fpqc) ≥ (fppf) ≥ (et) ≥ (zar) in the category
of schemes. Equipped with any one of them, the representable functor hX will be a sheaf.
This theorem will be proved when we talk about Grothendieck topology but here we only
need the theorem on Zariski site.

Theorem 4. If X, Y are two arbitrary schemes and ∪iXi = X is an open covering of X , then the
following diagram is an equalizer:

HomSch(X, Y )
∏

iHomSch(Xi, Y )
∏

i,j HomSch(Xi ∩Xj, Y ) (1)

Proof. Given a set of morphisms fi : Xi → Y satisfying the condition fi|Xi ∩Xj = fj|Xi ∩
Xj . At the level of underlying topological space, it’s obvious to see there will exist a
unique morphism f : |X| → |Y |. Then we should prove the part of sheaves.

For any open subset U ⊆ Y :

OX(f
−1(U))

∏
i OX(f

−1(U) ∩Xi) OX(f
−1(U) ∩Xi ∩Xj)

OY (U)

∃!
∏

i f
♯
i

The morphism OY (U) → OX(f
−1(U)) is induced by the universal property of the equal-

izer. Hence it will satisfy the compatible conditions.

Corollary 5. If Y is an affine scheme Spec R, and X is an arbitrary scheme, then we will have
the natural isomorphism HomSch(X, Spec R)

∼→ HomRings(R,OX(X)), f 7→ f ♯.

Proof. If X is also an affine scheme, then the corollary is a standard theorem in any text-
book of algebraic geometry. We cover X by a set of affine open subschemes X = ∪iXi,
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and coverXi∩Xj byXi∩Xj = ∪kXijk wherXijk is affine open in bothXi andXj . Assume
OX(X) = A,OX(Xi) = Ai,OX(Xijk) = Aijk. The sheaf property of OX tells us that there
is an equalizer

A
∏

iAi

∏
ijk Aijk

The representable functor Hom(R,−) preserves limits. Hence we have the following
commutative diagram:

HomSch(X, Spec R)
∏

i HomSch(Xi, Spec R)
∏

i,j,k HomSch(Xijk, Spec R)

HomRings(R,A)
∏

i HomRings(R,Ai)
∏

i,j,k HomRings(R,Aijk)

∼= ∼=

The dotted arrow will also be an isomorphism by diagram chasing.

According to the Theorem 4, HomSch(X, Y ) can be obtained from HomSch(Xi, Y ) where
Xi is affine open. Hence, if we restrict ourselves to the category of affine schemes, the
information of representable functors won’t be lost, and we can view the functor hY as
Affop → Sets. But the category of affine schemes is equivalent to the category of rings.
It’s equivalent to say hY is functor such that Rings → Sets, hY (A) = HomSch(Spec A, Y ).

If we consider the category of schemes over a base affine scheme Spec R, then hX :
R− alg → Sets. And we can conclude that via h : Sch/R → SetsR−alg, the category of
schemes over R is equivalent to a full subcategory of SetsR−alg.

Yoneda’s lemma plays a central role in the discussion above. It helps us establish an
equivalence between geometric objects and functors to some degree. Generally speaking
there are three advantages to view a scheme as a functor.

(1). Compared with describing the point structure of a scheme X directly, to describe the
structure of Y -valued points of X , that it, HomSch(Y,X) is much easier.
For example, we can consider the projective scheme Pn

k where k is a field. Accord-
ing to the standard teaching contents on projective schemes, we know Pn

k is glued
by (n + 1)’s affine spaces An

k . But it’s not affine in general. And there is another
viewpoint to describe the point structure of projective schemes using homogeneous
prime ideal. For a graded polynomial ring k[X] = k[x0, ..., xn], Pn

k = Proj k[X]
can be locally identified with an affine scheme, which means for any D+(f) ⊆ Pn

k ,
D+(f) ∼= Spec k[x0, ..., xn](f).
If k → k′ is a field extension, we now try to describe the structure of HomSch(Spec k

′,Pn
k),

which is in fact the standard projective space of k′. Pn
k is glued by affine schemes

Xi = Spec k[x0

xi
, ..., xn

xi
]. For any k′-valued point a : Spec k′ → Pn

k , if it factors
through some Xi, we will obtain a morphism σa : Ai = k[x0

xi
, ..., xn

xi
] → k′, and

(σa(
xo

xn
) : ... : σa(

xn

xn
)) in the projective space of k′. This is well defined and inde-

pendent from the choice of Xi.
Conversely, we assume (a0 : ... : an) is in the projective space of k′, and then we have
a representation τ : k[x0, ..., xn] → k′ of it, such that τ(xi) = ai. If ai ̸= 0, we will have
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σi : Ai → k′ satisfying σi(
xj

xi
) = aja

−1
i , which is independent from the choice of ai.

Then a : Spec k′ → Spec Ai ↪→ Pn
k .

Therefore for the projective scheme Pn
k , Pn

k(k
′) = Homk(Spec k

′,Pn
k) is just the projec-

tive space over k′ in the usual sense. Although for any other more general k-algebra
R, Pn

k(R) may not be such a projective space, there always exists an explicit descrip-
tion of this R-valued points set, even for any scheme X over k.

Pn
k(X) = {p : On+1

X ↠ L}/ ∼

where L is a line bundle and p ∼ p′ if there exists an isomorphism φ : L ∼−→ L satisfying
φ ◦ p = p′.
Better examples are Hilbert schemes and Grassmannians.

(2). Compared with constructing a scheme directly, constructing a functor is much eas-
ier. But then the problem will be how to prove this functor is representable. There
many examples, such as Hilbert schemes, Picard schemes and quotient schemes all
of which are due to Grothendieck’s work in [FGA]. We give the example of Hilbert
schemes here.
Suppose S is a locally Noetherian scheme, Pn

S = Pn
Z × S. Consider the closed sub-

scheme Y ⊆ Pn
S such that Y is flat over S and the set Hilb(S) consists of these

closed subschemes Y . For any morphism f : T → S, there a is a natural map

Pn
T = Pn

Z × T
id×f−→ Pn

Z × S = Pn
S . Then we will have the following pullback diagram:

Y ′ Pn
T

Y Pn
S

id×f

then we will have a morphism Hilb(f) : Hilb(S) → Hilb(T ), Y 7→ Y ′. In [FGA],
Grothendieck proves that this Hilbert functor is represented by a locally Noetherian
scheme HilbPn such that Hilb(−)

∼→ HomSch(−, HilbPn). In fact, it’s very hard to
describe the points in HilbPn directly, but the valued points of Hilbert functor are
easier to describe.
Sometimes, the functor we construct may not be representable and this motivates

more abstract concepts like algebraic spaces and algebraic stacks. According to the The-
orem 4, to prove a functor representable, we should at least prove it’s a sheaf, but the
set of presheaves is much bigger than the set of sheaves. If a functor constructed from
a moduli problem can be represented by a scheme X , then X will be called the fine
moduli space of this functor (or moduli problem). If it’s not representable, there are
two methods to deal with this problem. The first is to embed the category of schemes
into a larger category, and then the functor constructed may be represented in this
new larger category. The larger category can be the category of algebraic spaces or
algebraic stacks.
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The second method is to find a representable functor close enough to the functor we
are interested in. The underlying scheme of such representable functor will be called
a coarse moduli space. More precisely, if M is a moduli functor we are interested in and
M is the coarse moduli space of it with φ : M → HomSch(−,M), then (M,φ) should
at least satisfy that for any representable functor HomSch(−, N) with a morphism
f : M → HomSch(−, N), there exists a unique morphism g : M → N such that
g∗ ◦ φ = f .

M HomSch(−,M)

HomSch(−, N)

φ

f ∃!g∗

If the coarse moduli space exists, then it will be unique.

(3). The structure of the category of contravariant funcotrs (or presheaves) is similar to
that of Sets. In fact the category SetsC

op

is an elementary topos, which means there
exist colimits, limits, the subobject classifier and exponentials. Hence, many con-
structions which can be done in Sets can also be done in SetsC

op

. But this presheaf
category is too big to find useful information, though all of the objects in it can be rep-
resented as a colimits of representable functors. Therefore, we should find a smaller
category with enough information we want. The discussion above tells us that we
can restrict the representable functor hX to R− alg → Sets. Here, it actually means
the Yoneda embedding h : Sch → SetsSch

op

can be restricted to h : Sch → SetsR−alg,
where the codomain of the latter is much smaller than that of the former with infor-
mation not lost.

All these motivate us to develop functorial algebraic geometry which means here func-
tors are the first concept and spaces are the second concept. In the chapter of simplicial
sets we know every simplicial set X : ∆op → Sets has a CW-complex as its geometric
realization. It’s similar here. We can define affine schemes to be representable functors
Rings → Sets and every affine scheme has associated locally ringed space. The standard
construction is in any textbook about algebraic geometry. The category of locally ringed
space is denoted by LoRsp. Note that LoRsp is cocomplete since gluing process in it is
valid and we have the spectral functor Spec : Ringsop → LoRsp. For any locally ringed
space X :

Ringsop
Spec−−→ Rsp

HomLoRsp(−,X)
−−−−−−−−−→ Sets

then we haved defined a functor Spec∗ : LoRsp → SetsRings, X 7→ HomLoRsp(−, X)◦Spec
and it has a left adjoint functor

Spec! : Sets
Rings → LoRsp, X 7→ colim

HomRings(R,−)→X

Spec R

This is the associated geometric space for a functor X : Rings → Sets, which is also
denoted by |X|.

According to the adjunction

Spec! : Sets
Rings LoRsp : Spec∗
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a functor X : Rings → Sets is a scheme which means |X| is scheme in the classical sense
iff adjunctions X → Spec∗(|X|) and |Spec∗(|X|)| → |X| are isomorphisms.2 This is the
comparison theorem. We won’t talk more about these since our task in this section is not to
establish the foundation for functorial algebraic geometry, but to just sketch motivations.
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