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1 Introduction

The theme of this mini-course is Galois theory, which starts with field extension. The
prerequisites we assume are some basic group theory, ring theory and field theory,
which are contained in the undergraduate course Abstract Algebra.
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Roughly speaking, Galois theory is to study field theory using the technique of
group theory. If we assume the field extension K/F is finite Galois, which means
for an element u ∈ K, all roots of its minimal polynomial are different and in K, we
define the Galois group

Gal(K/F ) = AutF (K) := {f : K
∼→ K| f |F = idF}

Then the Galois correspondence (Theorem 3.9) states there is a one-to-one corre-
spondence between subfields of K containing F and subgroups of Gal(K/F ). Clas-
sically Galois theory comes from solvability of algebraic equations. For a polynomial
f(X) ∈ Q[X] it’s solvable by radicals iff the Galois group of its splitting field is solv-
able (Theorem 3.51). This is the theme of Section 3.4. It’s famous that polynomials
of degree ≤ 4 are always solvable by radicals but those of degree ≥ 5 are not solvable
in general. In Section 3.5 we will construct those polynomials not solvable. In this
course we also talk about applications of Galois theory to compass and straightedge
construction. Actually compass and straightedge could only define a field extension
of degree a power of 2. See Theorem 3.5 and Remark 3.36. This characterization
will help us solve four difficult problems in ancient Greece.

Apart from finite Galois theory, we also introduce infinite Galois theory and
there is a Galois correspondence as well (see Theorem 3.93). To deal with this we
equip Galois groups with a special topology called Krull topology and consider closed
subgroups. Such theory is compatible with finite Galois theory. Actually for a finite
Galois extension, its Galois group is a discrete finite group with Krull topology.
Hence all its subgroups are open as well as closed.

Finally we talk about Galois cohomology and Kummer theory. Galois cohomology
is a special case of Group cohomology and the most important theorem here is Hilbert
90 which also has a classical form focusing on finite cyclic Galois extension using the
technique of norm and trace. Of course we consider the Galois cohomology for infinite
Galois extensions as well which is called continuous cohomology. And this infinite
case can be reduced to the finite case via inverse limits and inductive limits (see
Proposition 4.31 and Theorem 4.33).

In the end we study Kummer theory which is the starting point of class field
theory. Classically multiplicative Kummer theory deduce a correspondence between
cyclic extensions and cyclic groups of F×/(F×)n where F is assumed to contain
n-th primitive root of unity 1. As a generalization there is a concept of Kummer
extensions. Interestingly there is also a modern viewpoint of multiplicative Kummer
theory using Galois cohomology. Moreover Artin–Schreier theory is an analogy of
Kummer theory in the case of char = p > 0, which is of the additive form. And there
is a viewpoint in Galois cohomology of it as well. All these are themes of Section
4.3.
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2 Field Extension

Let F be a field. Its characteristic is the minimal positive integer n such that
n · 1 = 0 in F . If such integer doesn’t exist, we say F has characteristic zero. It’s
obvious to see if char(F ) ̸= 0, then char(F ) = p where p is a prime number. If
char(F ) = p, then (a+ b)p = ap + bp for a, b ∈ F , since p|Ci

p where 1 < i < p.
If K is another field and f : F → K is a ring morphism, then f is injective since

in a field the only proper ideal is (0).

Definition 2.1. The injection F ↪→ K is called a field extension, and it can be
written as F ⊆ K or K/F as well. Since F is a field, we can view K as a vector
space over F , whose dimension is denoted by dimFK = [K : F ]. A field extension
F ⊆ K is called finite, resp. infinite if [K : F ] <∞, resp. [K : F ] =∞.

Proposition 2.2. Let F ⊆ E ⊆ K be field extensions. Then

[K : F ] = [K : E] · [E : F ].

Proof. If {xi|i ∈ I} is a basis of E over F , and {yj|j ∈ J} is a basis of K over E.
Then every element u ∈ K can be written as u =

∑m
k=1 akyjk where ak ∈ E. But

ak =
∑m′

l=1 bklxil , bkl ∈ F . Then u =
∑

k,l bklxilyjk . Therefore {xiyj} generate K over
F.

On the other hand, if
∑

k,l cklxilyjk = 0, then
∑

k

∑
l(cklxil)yjk = 0⇒

∑
l cklxil =

0 ⇒ ckl = 0, which means xiyj’s are independent and form a basis of K over F .
Hence [K : F ] = [K : E] · [E : F ].

For a field extension F ⊆ K, if S is a subset of K, then the smallest subring (resp.
subfield) is denoted by F [S] (resp. F (S)).

Definition 2.3. Given a field extension K/F , an element u ∈ K is called algebraic
over F is there is a polynomial P (X) ∈ F [X] such that P (u) = 0 in K. The field
extension F ⊆ K is algebraic, if all elements of K are algebraic over F .

Theorem 2.4. If K/F is a finite field extension, then it’s algebraic. On the other
hand, if u ∈ K is algebraic over F then [F (u) : F ] <∞, where F (u) is the samllest
subfield of K containing F and u.

Proof. If F ⊆ K is finite, for any u ∈ K, {1, u2, ..., un, ...} will be dependent. This
proves the first statement.

On the other hand, we consider the F -morphism f : F [X] → K,X 7→ u. Then
F [X]/I ∼= im f = F [u], which is an integral domain. Since F [X] is PID, I = (Pu)
generated by a monic prime polynomial Pu. But in a PID, every prime ideal is
maximal, thus F [X]/(Pu) ∼= F [u] is a field and F [u] = F (u). The monic irreducible
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polynomial Pu is called the minimal polynomial of u. If [F (u) : F ] = deg(Pu) <
∞.

Remark 2.5. If u, v ∈ K are algebraic over F , then u · v and u + v are algebraic
over F as well. It’s easy to prove, just considering F (u, v), since [F (u, v) : F ] <∞.
Similarly, if E,E ′ are subfields of K containing F , which are algebraic over F , then
E · E ′ is algebraic over F as well.

Theorem 2.6. Given field extensions F ⊆ E ⊆ K, if E/F and K/E are algebraic,
then K/F is algebraic as well.

Proof. Assume u ∈ K, its minimal polynomial over E is Pu = Xn + an−1X
n−1 +

· · · + a0, where ai ∈ E. Since E is algebraic over F , [F (ai) : F ] < ∞. Then
[F (a0, ..., an−1) : F ] ≤

∏n−1
i=0 [F (ai) : F ] <∞. Then u is algebraic over F (a0, ..., an−1),

hence algebraic over F .

Lemma 2.7. Given a field extension K/F , u ∈ K is algebraic over F and Pu is the
minimal polynomial of u. If E/F is another field extension and there is an element
v ∈ E such that Pu(v) = 0 in E, then there is a unique embedding F (u) ↪→ E such
that u 7→ v.

Proof. F (u) ∼= F [X]/(Pu).

F [X] E

F [X]/(Pu)

∃!
(1)

Since Pu(v) = 0, there is a unique morphism F (u)→ E.

2.1 Splitting Fields and Algebraic Closure

Definition 2.8. Given a field extension K/F , P ∈ F [X] splits in K if P factors
as

P (X) = c(X − u1) · ... · (X − un)
where c ∈ F , ui ∈ K. We say K is a splitting field of P over F if K is the smallest
field in which P splits.

This definition means that the splitting field K of P is generated by its roots.

Theorem 2.9. For any P ∈ F [X] there exists a splitting field K of it over F (unique
up to isomorphism) and moreover [K : F ] ≤ n! where n := deg(P ).
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Proof. We prove the unique existence of splitting field by induction on the degree of
P . If n = 1, P = c(X − u). Since c, cu ∈ F , u ∈ F , then K = F . We assume it’s
true for n − 1, deg(P ) = n, and P doesn’t split in F . We write P as P =

∏
iQi

where Qi is irreducible. Choose one Qi = Q, degQ ≤ degP . We consider the field
F1 = F [X]/(Q),u = X̄, [F1 : F ] = deg(Q) ≤ n. All coefficients of P are in F , thus
P (X) ∈ F1[X]. But P (u) = 0, P (X) = (X − u)P1(X), deg(P1(X)) = n − 1. Then
there is a unique splitting field K of P1 over F1 and [K : F1] ≤ (n−1)!. According to
the definition of splitting fields it’s obvious to see K is a splitting field of P over F
and [K : F ] = [K : F1] · [F1 : F ] ≤ (n− 1)! · n = n!. If K ′ is another splitting field of
P over F , then according to the Lemma 2.7, there is an embedding F1 ↪→ K ′. Then
K ′ will also be a splitting field of P1 over F1. Since deg(P1) = n− 1, K ∼= K ′.

Note though the splitting field is unique, isomorphisms between them may not
be unique.

Definition 2.10. A field F is called algebraically closed if for any algebraic field
extension K/F , K = F . K/F is called an algebraic closure if it’s algebraic and
K is algebraically closed.

According to the definition, we knowK is algebraically closed iff every polynomial
P (X) ∈ K[X] with deg(P ) ≥ 1 decomposes in K[X] into a product of linear factors
P (X) = c

∏
i(X − ui) where c ∈ K×, ui ∈ K.

Theorem 2.11. The algebraic closure F̄ of F always exists and is unique up to
isomorphism.

To prove the theorem above, we need to know Zorn’s lemma, which is equivalent
to the axiom of choice.

Lemma 2.12 (Zorn). let M be a partially ordered set such that every subset of M
that is totally ordered with respect to the order induced by M admits an upper bound
in M . Then there exists a maximal element in M .

Proposition 2.13. Every field F admits an extension field K which is algebraically
closed.

Proof. The construction process of K will be based on polynomial rings in infinitely
many variables over F following E. Artin. In the first step we set up a field K1

extending F such that every f ∈ F [X] with deg(f) ≥ 1 admits a zero in K1. To do
this we consider the system of variables X = {Xf |f ∈ F [X], deg(f) ≥ 1} and F [X].
We assume the ideal I = (f(Xf )) is generated by all polynomials of one variable
f(Xf ) where f ∈ F [X], deg(f) ≥ 1. We prove it’s a proper ideal in F [X] first.

If I = F [X], then we have the equation
n∑

i=1

gifi(Xfi) = 1
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There will exist a field F ′ containing F such that every polynomial fi has a root ui
in F ′. We can construct F ′ as follows. First choose an irreducible factor h1 of f1 over
F , and let F1 = F [X]/(h1). Then choose an irreducible factor h2 of f2 over F1, since
f2 ∈ F1[X], then F2 = F1[X]/(h2). Continuing this process, we will finally obtain
such F ′.

Now we consider the F -morphism F [X]→ F ′ such that Xfi 7→ ui, other Xf 7→ 0.
Then the equation above of left hand vanishes. A contradiction! Thus I is proper.
We choose a maximal ideal m of F [X] containing I and let K1 = F [X]/m. Then
there is a canonical map

F ↪→ F [X]→ F [X]/m = K1

The residue class of Xf in K1 is denoted by X̄f , and it’s a root of f(X). Continuing
this process, we obtain the sequence

F = K0 ⊆ K1 ⊆ K2 ⊆ ...

LetK = ∪∞i=0Ki. We prove it’s algebraically closed. Given any polynomial f ∈ K[X],
all coefficients will lie in some Kn. Then it has a root in Kn+1. f will factor as
f = (X − u1)f1, where f1 ∈ Kn+1. Continuing this factorization process, we will
finally obtain f = c

∏
i(X − ui) where c ∈ K∗, ui ∈ K.

Proof of Theorem 2.11. According to Proposition 2.13, there is an algebraically closed
field K extending F . We define

F̄ := {u ∈ K|u is algebraic over F}

From the Remark 2.5, we know F̄ is actually an algebraic field extension of F . Given
f(X) = anX

n + · · ·+ a0 ∈ F̄ [X], then all roots vi of it are in K, which means these
vi’s are algebraic over F (a0, . . . , an) hence algebraic over F and then vi ∈ F̄ .

Next we will use the Lemma 2.7 and Zorn’s lemma to prove the uniqueness
of the algebraic closure, which is the corollary of the next proposition, though the
isomorphism between algebraic closures are not unique nor canonical.

Proposition 2.14. Given a field extension L/F and a field morphism σ : F ↪→ K
such that L/F is algebraic and K is algebraically closed, then σ can be extended to be
an extension σ′ : L ↪→ K. If moreover, L is algebraically closed and K is algebraic
over σ(F ), then every extension σ′ of σ is an isomorphism.

Proof. If u ∈ L and Pu ∈ F [X] is the minimal polynomial of u over F , then σ(Pu)
has a root v in K and according to the Lemma 2.7, there will be a unique morphism
F (u) ↪→ K, u 7→ v. Let M be the set of pairs (E, τ) such that E is a subfield of L
containing F and τ : E ↪→ K extends σ : F ↪→ K. (E, τ) ≤ (E ′, τ ′) if E ⊆ E ′ and
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τ ′ extends τ . The statement above shows M is not empty. If N is a totally ordered
subset of M , it’s obvious to see it has an upper bound E ′ = ∪E∈NE, σ′|E = σ. By
Zorn’s lemma, there is an maximal element (E ′, σ′) in M . According to the Lemma
2.7, we can conclude E ′ = L.

If moreover L is algebraically closed and K is algebraic over σ(F ) hence algebraic
over σ′(L), there is a morphism µ : K ↪→ L extending σ′−1 : σ′(L) → L. Then
µ ◦ σ′ = idL, and µ is surjective. Hence µ is an isomorphism, whose converse is
σ′.

In the following, for every field F we always fix an algebraic closure F̄ , and its
field extensions considered are contained in F̄ .

Example 2.15. The complex field C is an algebraic closure of the field R of real
numbers. There is a generalization of this example, which is called Artin-Schreier
theorem1 that if F̄ is the algebraic closure of F and 1 < [F̄ , F ] <∞, then [F̄ : F ] = 2
and −1 is not a square root in F , which means F̄ = F (

√
−1).

From the proof of the Theorem 2.11, we know if Q is the field of rational numbers,
then

Q̄ = {u ∈ C | u is algebraic over Q}.
Therefore there are only countably many elements in Q̄ and then Q̄ ̸= C.

Exercise 2.16. Let p be a prime number. Decide the splitting field (in the algebraic
closure Q̄) of Xp − 2 ∈ Q[X].

2.2 Normal Extension

Definition 2.17. A field extension F ⊆ K ⊆ F̄ is called normal, if every irreducible
polynomial P (X) ∈ F [X] admitting a zero in K splits over K (which means all its
roots in F̄ are in K).

Theorem 2.18. The following statements are equivalent:

(1) K/F is normal.

(2) Every F -embedding ι : K ↪→ F̄ satisfies ι(K) ⊆ K.

(3) HomF (K, F̄ ) = HomF (K,K).

If moreover [K : F ] < ∞ then the above statements are equivalent to that K is a
splitting field of some P (X) ∈ F [X].

1See [Jac89] Theorem 11.14 or [Bos18] Section 6.3 for details.
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Proof. The equivalence of (2) and (3) is obvious and we only prove the equivalence
between (1) and (2).

(1)⇒ (2) Assume K/F is normal, u ∈ K and Pu is the minimal polynomial of u
over F . Then all roots of Pu are in K. For any F -embedding ι : K ↪→ F̄ , ι(u) is a
root of Pu since ι(Pu(u)) = Pu(ι(u)) = 0. Then ι(u) ∈ K, ι(K) ⊆ K.

(2)⇒ (1) If the irreducible polynomial P ∈ F [X] has a root u in K, then P = Pu

is the minimal polynomial of u over F . If v (may equal u) is another root of P in F̄ ,
then there is a morphism F (u)→ F̄ , u 7→ v, which can be extended to be ι : K → F̄
according to Proposition 2.14. Then ι(u) = v ∈ K. Hence K/F is normal.

Now suppose [K : F ] < ∞. First we assume F ⊆ K is normal and choose
u1 ∈ K − F . Then its minimal polynomial is Pu1 and [K : F (u1)] < [K : F ]. Next
we choose u2 ∈ K − F (u1). Continuing this process, we conclude K − F (u1, ..., un).
Let P =

∏n
i=1 Pui

, and then K is the splitting field of P .
On the other hand, if K is the splitting field of P ∈ F [X] whose roots in F̄ are

{u1, ..., un}. Then K = F (u1, ..., un). Consider an F -embedding ι : F (u1, ..., un) →
F̄ , since ι(ui) is a root of P as well, ι(ui) ∈ K. Hence ι(K) ⊆ K.

Corollary 2.19.

(1) For field extensions F ⊆ E ⊆ K ⊆ F̄ , if K/F is normal then K/E is normal.
But E/F is not necessarily normal.

(2) If E/F and E ′/F are normal, then E · E ′/F is normal.

Proof. (1). Given an element u ∈ K, Pu and P ′u are its minimal polynomials over F
and E respectively. Then P ′u|Pu. Since all roots of Pu are in K, all roots of P ′u are
also in K. HenceK/E is normal.

(2). Given any embedding ι : E · E ′ → F̄ , since E/F and E ′/F are normal,
ι(E) ⊆ E, ι(E ′) ⊆ E ′. Then ι(E · E ′) ⊆ E · E ′. Then E · E ′/F is normal.

Remark 2.20. The property of being normal is not transitive, i.e. for field extensions
F ⊆ E ⊆ K, if F ⊆ E and E ⊆ K are normal, the field extension F ⊆ K need not
be normal. For example Q ⊆ Q(

√
2) and Q(

√
2) ⊆ Q( 4

√
2) are normal since they

are of degree 2. But Q ⊆ Q( 4
√
2) is not normal. Indeed, the polynomial X4 − 2 is

irreducible over Q according to the Eisenstein’s criterion, and 4
√
2 · i is also a root of

X4 − 2, but i ̸∈ Q( 4
√
2) ⊆ R.

Moreover, the splitting field of X4−2 is Q( 4
√
2, i) since its roots are 4

√
2,− 4
√
2, 4
√
2·

i,− 4
√
2 · i. Then for field extensions Q ⊆ Q( 4

√
2) ⊆ Q( 4

√
2, i). Though Q ⊆ Q( 4

√
2, i)

is normal, Q ⊆ Q( 4
√
2) is not normal.
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2.3 Separable Extension

Definition 2.21. Given P (X) ∈ F [X] (may not be irreducible), it is called sepa-
rable if it has no multiple roots in F̄ , otherwise inseparable.

For a field extension F ⊆ K, an element u ∈ K is called separable if its minimal
polynomial Pu is separable. The field extension F ⊆ K is called separable if all
elements of K are separable.

For a polynomial P (X) =
∑

k akX
k ∈ F [X], we define its derivative P ′(X) =∑

k kakX
k−1.

Lemma 2.22. Given a polynomial P (X) ∈ F [X], it has multiple roots in F̄ iff
(P, P ′) ̸= 1 in F̄ . Moreover if P is irreducible, then P has multiple roots iff P ′ = 0.

Proof. Write P (X) = c
∏n

i=1(X − ui), then

P ′(X) = c
n∑

i=1

(X − u1) · ... · (X − ui−1)(X − ui+1) · ... · (X − un).

If P has multiple roots, say u1 = u2, then P ′(u1) = 0 and so (X − u1)|(P, P ′).
Conversely, if ui ̸= uj for any i ̸= j, then P ′(ui) ̸= 0 for any 1 ≤ i ≤ n, thus
(P, P ′) = 1.

If moreover P is irreducible, then(P, P ′) = 1 or P . Hence P has multiple roots iff
(P, P ′) = P . But degP ′ ≤ n− 1, we must have P ′ = 0.

Remark 2.23. If char(F ) = 0, any nonconstant polynomial P will have a non zero
derivative P ′. Therefore, any field extension of characteristic 0 is separable. But it’s
not true when char(F ) = p > 0.

For example, let F = Fp(t) = Q(Fp[t]) the function field over the finite field
Fp. Suppose P (X) = Xp − t ∈ F [X]. According the Eisenstein’s criterion t is a
prime element of Fp[t] and t|t, t2 ∤ t, t ∤ 1. Then P (X) is irreducible in Fp[t][X] hence
irreducible in Q(Fp[t])[X] = F [X]. But P (X) is inseparable since P ′(X) = pXp−1 =
0. The splitting field of P is not separable.

Since all field extensions of characteristic 0 are separable, we assume char(F ) =
p > 0 in the following.

Exercise 2.24. A field F is called perfect if every irreducible polynomial F [X] is
separable. Prove the following statements.

(1) A field F with F = p > 0 is perfect iff F p = F .

(2) Every finite field is perfect.
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Remark 2.25. P (X) ∈ F [X] is an irreducible and inseparable polynomial. Then P
has multiple roots in F̄ and P ′ = 0. If P =

∑
k akX

k, then P ′ =
∑

k kakX
k−1 = 0,

p ∤ k ⇒ ak = 0. Hence P =
∑

k apkX
pk = P1(X

p), where P1 =
∑

k apkX
k ∈ F [X].

Since P is irreducible, P1 is irreducible as well. If P1 is separable, we are done.
Otherwise, we continue this process. Since deg(P ) < ∞, finally we will obtain an
irreducible and separable polynomial Pe such that P (X) = Pe(X

pe). ns = deg(Pe)⇒
n = ns · pe = deg(P ). Here ns is called the separable degree and pe is called the
inseparable degree of P .

Lemma 2.26. Given a field extension K/F , u ∈ K is separable over F iff F (u) =
F (up).

Proof. We assume u is separable first. Then F1 = F (up) ⊆ F (u). Consider the
polynomial Xp− up ∈ F1[X] and u is a root of it. Let P be the minimal polynomial
of u over F1 ⇒ P |Xp − up. But Xp − up = (X − u)p. Thus P = (X − u)k for some
integer k. Since P is separable and all roots of it are different, P = X − u. Hence
u ∈ F1. Then F (u) = F (up).

On the other hand, we assume F (u) = F (up). Let P be the minimal polynomial
of u over F . If P is not separable, then P (X) = P1(X

p) according to the Remark
2.25. Since P1 is irreducible and P (up) = 0, P1 is the minimal polynomial of up.
Then [F (u) : F ] = [F (up) : F ] = degP = degP1 = p · degP1. A contradiction! Hence
P is separable and u is separable.

Proposition 2.27.

(1) F ⊆ E ⊆ K are field extensions. K/F is separable iff E/F and K/E are separa-
ble.

(2) If E/F and E ′/F are separable, then E · E ′/F is separable.

The part of ⇒ of (1) is trivial. But the part of ⇐ is not easy and we need more
characterizations of the property of being separable.

Lemma 2.28. Assume [K : F ] = d <∞. The following statements are equivalent.

(1) F ⊆ K is separable.

(2) K = F ·Kp, where Kp = {kp|k ∈ K} a subfield of K since char(F ) = char(K) =
p > 0;

(3) There is a basis {e1, ..., ed} of K over F such that {ep1, ..., e
p
d} is still a basis.

Proof. (1)⇒ (2): Since all u ∈ K are separable over F , F (u) = F (up) according to
the Lemma 2.26. Then u ∈ F (up) ⊆ F · Kp. Hence K ⊆ F · Kp. F · Kp ⊆ K is
obvious.

10



(2) ⇒ (3): Assume K = Fe1 ⊕ ... ⊕ Fed. Then k =
∑

i fiei ⇒ kp =
∑

i f
p
i e

p
i .

Hence Kp = F pep1 + ... + F pepd. F ·Kp = Fep1 + ... + Fepd = K. Since [K : F ] = d,
{ep1, ..., e

p
d} is still a basis. Also from F ·Kp = Fep1 + ... + Fepd = K, it’s obvious to

see (3)⇒ (2).
(2)⇒ (1): We assume u ∈ K is inseparable. Then if P is the minimal polynomial

of u, then P (X) = P1(X
p) =

∑n
k=0 akX

pk. P (u) = 0 ⇒ {1, up, ..., unp} are linearly
dependent, but {1, u, ..., unp−1} are linearly independent. Accordting to the proof of
(2). ⇒ (3)., {1, up, ..., up(np−1)} are linearly independent. But n ≤ 2n − 1 ≤ pn − 1,
{1, up, ..., unp} ⊆ {1, up, ..., up(np−1)} are linearly independent. A contradiction!

Lemma 2.29. A simple algebraic extension F (u)/F is separable iff u is separable
over F .

Proof. The part of ⇒ is trivial and it’s enough to prove the part of ⇐. If P (X) ∈
F [X] is the minimal polynomial of u over F , P (X) =

∑
k akX

k with deg(P ) = n,
then {1, u, ..., un−1} form a basis of F (u) over F . We prove {1, up, ..., up(n−1)} is a
basis as well. If this is true, from the Lemma 2.28, F ⊆ F (u) is separable. If this
is not true, there will exist {bk} which are not all zero such that

∑
k bku

kp = 0. Let
P1(X) =

∑
k bkX

k, with deg(P1) ≤ n−1. P1(u
p) = 0. Then [F (up) : F ] ≤ deg(P1) ≤

n− 1. But since u is separable, according to the Lemma 2.26 F (u) = F (up), [F (u) :
F ] = [F (up) : F ] = n, a contradiction! Hence {1, up, ..., up(n−1)} is a basis as well.

Proof of Proposition 2.27. (1). We only prove the part of ⇐. If [K : F ] < ∞,
K = E ·Kp = (F · Ep) ·Kp = F · (Ep ·Kp) = F ·Kp . Hence K/F is separable.

If [K : F ] = ∞, u ∈ K and Pu ∈ E[X] is the minimal polynomial of u over E.
Pu(X) = Xn + an−1X

n−1 + ... + a0. Consider F ⊆ F (a0, ..., an1) ⊆ E ⊆ E(u) ⊆ K.
Since E/F is separable, according to the part of⇒ of 1., we know F (a0, ..., an−1)/F is
separable. And since the minimal polynomial of u over F (a0, ..., an1) is just Pu, which
is separable. Then from the Lemma 2.29, F (a0, ..., an1 , u)/F (a0, ..., an1) is separable.
Since [F (a0, ..., an1 , u) : F ] < ∞, F (a0, ..., an1 , u)/F is separable and especially u is
separable.

(2). Assume u ∈ E, u′ ∈ E and their minimal polynomials are Pu and Pu′ respec-
tively. Then since u is separable, F (u)/F is separable. The minimal polynomial of
u′ over F (u) divides Pu′ , hence separable as well. Then F (u, u′)/F (u) is separable
⇒ F (u, u′)/F is separable. Hence u · u′, u + u′ and u − u′ are all separable. This
proves the part of (2).

According to the proof of the part (2) above, we know given an algebraic extension
K/F , all separable elements in K form a subfield containing F , which is denoted by
Ks. Especially if K = F̄ , F̄s is denoted by Fsep and called the separable closure.
This motivates us to study Ks/F and K/Ks respectively, which is the task in the
next subsection.
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2.4 Purely Inseparable Extension

Definition 2.30. For an algebraic extension K/F , the separable degree is defined
to be [K : F ]s = [Ks : F ] and the inseparable degree is [K : F ]i = [K : Ks].

Definition 2.31. A polynomial P (X) ∈ F [X] is called purely inseparable if it
admits only one zero u ∈ F̄ . Given an algebraic extension F ⊆ K, u ∈ K is called
purely inseparable if it’s the root of a purely inseparable polynomial in F [X]. This
algebraic extension is purely inseparable if all its elements are purely inseparable over
F .

Remark 2.32. If P (X) ∈ F [X] is monic, irreducible and purely inseparable with
deg(P ) = prm > 1 where p ∤ m, then according the Remark 2.25 P (X) = P1(X

p),

with P1 monic and irreducible. P1(X) = 0 ⇔ P (X
1
p ) = 0 ⇔ X

1
p = u ⇔ X = up,

which means P1 is purely inseparable. Continue this process. Finally we obtain
Pe(X) with deg(Pe) = m. But Pe is also purely inseparable, if m > 1 then it’s
inseparable and hence p|m. A contradiction! Therefore m = 1 and P (X) = Xpe − c
where c = up

e
. In a summary, given an algebraic extension K/F , u ∈ K is purely

inseparable iff u is the root of a polynomial Xpn − c ∈ F [X] iff up
n ∈ F for some n.

Fact 2.33.

(1) If K/F is a finite purely inseparable extension, then [K : F ] is a power of p.

(2) If E/F and K/E are purely inseparable, then K/F is purely inseparable as well.

(3) If E/F and E ′/F are purely inseparable, then E · E ′/F is purely inseparable.

Proof. (1). SinceK/F is finite, u ∈ K is the root of some polynomialXpn−c ∈ F [X].
Hence the degree of its minimal polynomial is the power of p. Moreover, if E is any
subfield of K containing F , then the minimal polynomial of u ∈ K over E divides
that over F , hence whose degree is the power of p as well. Since K = F (u1, ..., um)
we conclude [K : F ] = [F (u1, ...., um) : F (u1, ..., um−1)] · ... · [F (u1) : F ] is a power of
p.

(2). Let u ∈ K. Since K/E is purely inseparable, there is some n such that
up

n ∈ E. E/F is purely inseparable as well. Then (up
n
)p

m
= up

n+m ∈ F . Therefore
K/F is purely inseparable.

(3). For any u ∈ E, v ∈ E ′, there are integers n and m such that up
n
, vp

m ∈ F .
Then (u · v)pn+m

, (u+ v)p
n+m ∈ F . Hence E · E ′/F is purely inseparable.

Proposition 2.34. Ks ⊆ K is purely inseparable.

Proof. Assume u ∈ K and P is the minimal polynomial of u over Ks. According
the Remark 2.25, there is an irreducible and separable polynomial Pe such that
Pe(X

pe) = P (X). Then Pe(u
pe) = 0, which means Pe is the minimal polynomial of

12



up
e
over Ks and u

pe is separable over Ks. Thus u
pe ∈ Ks and then Pe(X) = X −upe .

P (X) = Xpe − upe and u is purely inseparable over Ks.

Remark 2.35. If F (u)/F is a simple algebraic extension, then we prove [F (u) :
F ]s = ns where ns comes from the Remark 2.25 and is the degree of Pe.

Proof. Since up
e
is separable, F (up

e
) ⊆ F (u)s. If v ∈ F (u)s − F (up

e
) is separable

over F and is independent from {1, upe , ..., upe(ns−1)}. According to the Lemma 2.26,
F (up

e
, v) = F (up

e
, vp

e
) and then vp

e
is independent from {1, upe , ..., upe(ns−1)}. Since

{1, u, ..., upens−1} form a basis of F (u) over F , v =
∑

k aku
k and vp

e
=

∑
k a

pe

k u
pek.

Since up
ens is a linear sum of up

ek , vp
e
is a linear sum of up

ek as well, where 0 ≤ k ≤
ns − 1. A contradiction! Hence F (up

e
) = F (u)s and ns = [F (up

e
) : F ] = [F (u)s :

F ].

Theorem 2.36. Given a finite algebraic extension K/F , we have the following equa-
tion

[K : F ]s = |HomF (K, F̄ )|
then |HomF (K, F̄ )| ≤ [K : F ] and |HomF (K, F̄ )| = [K : F ] iff [K : F ] = [K : F ]s iff
F ⊆ K is separable.2

Proof. Consider F ⊆ Ks ⊆ K. We first prove HomF (K, F̄ ) = HomF (Ks, F̄ ). In
fact there is a map HomF (K, F̄ ) → HomF (Ks, F̄ ), τ 7→ τ |Ks. According to the
Proposition 2.14, this map is surjective. Thus it’s enough to prove it’s injective.

From the Proposition 2.33 we know Ks ⊆ K is purely inseparable, which means
every u ∈ K is the only root of a polynomial Xpn − c ∈ Ks[X], where c = up

n
.

In fact, given any τ : K → F̄ , we assume v = τ(up
n
) = τ(u)p

n
. Then consider the

polynomial Xpn−v ∈ F̄ [X]. If v′ is a root of it, then Xpn−v = (X−v′)pn . Hence the
root v′ is unique. But since τ(u) is the root of Xpn−τ(c) = Xpn−v, τ(u) = v′, which
means τ is determined by τ |Ks and we could only consider F -morphisms Ks → F̄ .

Given a separable element v ∈ Ks, P is its minimal polynomial over F with
deg(P ) = n = [F (v) : F ]. Then P is irreducible and separable, whose roots are
all different in F̄ . According to the Lemma 2.7, there are only n’s different F -
morphisms F (v) → F̄ . By induction, we conclude [Ks : F ] = |HomF (Ks, F̄ )| =
|HomF (K, F̄ )|.

2.5 Appendix on Finite Fields

In this section, we review some basic facts about finite fields. Actually all finite
fields are of the form Fq having q elements where q = pn and p is prime. Note Fq is
different from Z/qZ if n > 1.

2In some textbooks such as [Bos18] and [Lan02], the equation above is the definition of the separable degree. And
to prove the equation without the assumption of finite degree we may need the transfinite induction.
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Remark 2.37. If F is a finite field, then char(F ) = p > 0, therefore Fp ⊆ F and
it’s a finite algebraic extension. Viewing F as a vector space over Fp, we know there
must be q = pn elements in F. Then the multiplicative group F× has order q− 1 and
all elements of F× are roots of the polynomial Xq−1 − 1. Hence F is the splitting
field of Xq −X over Fp. According to the Theorem 2.18, it’s normal.

On the other hand, if q = pn then all roots of Xq−X in F̄p form a subfield, since
(u+ v)p

n
= up

n
+ vp

n
.

Lemma 2.38. Let F be a field and H is a finite subgroup of the multiplicative group
F×. Then H is cyclic.

Proof. For all elements of H there exists one a ∈ H with the maximal order m. Let
Hm be the subgroup of all elements in H whose order divides m. Then all elements
of Hm are zeros of the polynomial Xm − 1. Hence |Hm| ≤ m. But < a >⊆ Hm

therefore Hm =< a > and it’s cyclic. If there is some b ∈ H − Hm whose order
n doesn’t divides m, then there will be an element with order lcm(n,m) > n. A
contradiction! Hence Hm = H.

Corollary 2.39. For any finite field Fq, its multiplicative group F×q is cyclic.
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3 Galois Theory

We fix some notations first.
If K/F is a field extension not necessarily algebraic, we define

AutF (K) := {τ : K
∼→ K| τ |F = idF}

then AutF (K) is a group. For any two τ, σ ∈ AutF (K), we let σ · τ = σ ◦ τ : K
τ→

K
σ→ K.

Fact 3.1. If K/F is algebraic, then AutF (K) = HomF (K,K).

Proof. Given any F -morphism τ : K → K, we know it’s injective and it’ enough to
prove it’s surjective. We assume u ∈ K and P ∈ F [X] is its minimal polynomial
over F . If u1, ..., un are its different roots in F̄ , we assume only u1, ..., ur are in K.
Then u ∈ {u1, ..., ur}. Since τ fixes F , τ(ui) is also a root of P in K where 1 ≤ i ≤ r.
Then τ : {u1, ..., ur} → {u1, .., ur}. That τ is injective implies it’s surjective on this
subset as well, which means ∃ui, τ(ui) = u.

There are tow operations we should know:

1. If H ≤ AutF (K), KH := {u ∈ K|∀τ ∈ H, τ(u) = u} a subfield of K containing
F .

2. If F ⊆ E ⊆ K, then AutE(K) ≤ AutF (K).

and it’s obvious to see

1. If H1 ≤ H2, then K
H2 ⊆ KH1 .

2. If E1 ⊆ E2, then AutE2(K) ≤ AutE1(K).

Definition 3.2. An algebraic extension K/F is called Galois if it’s normal and
separable. And the Galois group is defined to be Gal(K/F ) := AutF (k).

Remark 3.3. If we assume K/F is Galois, then HomF (K, F̄ ) = HomF (K,K) =
AutF (K) = Gal(K/F ). In particular if K/F is finite, |Gal(K/F )| = [K : F ] accord-
ing to the Theorem 2.36.

Remark 3.4. Given an algebraic extension K/F , there exists a smallest normal
extension N/F such that K ⊆ N ⊆ F̄ and this normal extension is called the
normal closure. If K = F (U) where U = {ui} is a family of elements in K and Pi’s
are their minimal polynomial over F . IfM/F is any normal extension containing K,
then all roots of Pi are in M . Let N be the field generated by all roots of Pi in F̄ .
Then F ⊆ K ⊆ N ⊆M . Consider the F -embedding ι : N → F̄ , which is determined
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by its values on roots of those Pi. But if u is a root of P , then ι(u) is a root of P
as well. We see ι(N) ⊆ N . According to the Theorem 2.18, N/F is normal. Hence
N/F is the normal closure of F/K. And this normal closure is unique, since it’s the
intersection of all such M .

If K/F is finite, then the family U has only finitely many elements and there are
only finitely many polynomials Pi, hence [N : F ] <∞. Moreover if we assumeK/F is
separable, then N = K(u1, ..., un) where ui is some root of irreducible and separable
polynomial Pi ∈ F [X]. According to the Lemma 2.29, N/F is finite separable, hence
finite Galois.

For any algebraic field extension K/F we define the Galois closure to be the
smallest Galois extension E/F such that F ⊆ K ⊆ E ⊆ F̄ . IfK/F is finite separable,
we have seen that the Galois closure is just the normal closure of K/F which is finite
as well.

Example 3.5. Q( 3
√
2)/Q is not normal. The irreducible polynomial X3 − 2 has

roots 3
√
2, 3
√
2ξ3,

3
√
2ξ23 , where ξ3 = e

2πi
3 = −1

2
+ 1

2

√
3i and ξ23 = −1

2
− 1

2

√
3i. Though

3
√
2 ∈ Q( 3

√
2), the other roots are not in Q( 3

√
2). But Q( 3

√
2)/Q is finite separable.

Hence its Galois closure is just its normal closure Q( 3
√
2, ξ3) = Q( 3

√
2,
√
3i) of degree

6 over Q.

Now we try to introduce the most important theorem Galois correspondence
between group theory and field theory. But before that we should prove a general
but difficult lemma of E. Artin. The following lemma is a summary of sections 5.6
and 5.7 in [Art07].

Lemma 3.6 (E. Artin). Let K be a field and H = {τ1, ..., τn} is a finite subgroup of
Aut(K). If E = KH , then K/E is finite Galois with degree [K : E] = |H| = n.

We divides three steps to prove this lemma.

1. Step 1: [K : E] ≥ n.

2. Step 2: [K : E] ≤ n.

3. Step 3: K/E is Galois i.e. normal and separable.

To prove the step 1, we need the following lemma:

Lemma 3.7. Let K be a field and H = {τ1, ..., τn} is a finite subset (not necessarily
a subgroup) of Aut(K) whose elements are all different. If there are ci ∈ K such that

c1τ1(x) + ...+ cnτn(x) = 0

for all x ∈ K, then ci = 0, i = 1, ..., n.
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Proof. If there are non trivial relations among τi, we may assume

c1τ1(x) + ...+ crτr(x) = 0

for all x ∈ K such that ci ̸= 0 for i = 1, .., r and r is the smallest one. Evidently
r ≥ 2, otherwise r = 1 and c1τ1(x) = 0 for all x ∈ K. Since τ1 is an automorphism,
it’s impossible. Replacing x by ax where a ∈ K∗, we have

c1τ1(a)τ1(x) + ...+ crτr(a)τr(x) = 0

This yields the following relation:

c1[τ1(a)− τr(a)]τ1(x) + ...+ cr−1[τr−1(a)− τr(a)]τr−1(x) = 0

which is shorter than we have assumed. Hence τi(a) = τr(a) where i = 1, ..., r − 1
for all a ∈ K∗, which means τ1 = τr, r ≥ 2. A contradiction!

Proof of Lemma 3.6. Step 1: [K : E] ≥ n.
Assume [K : E] = r < n and let x1, ..., xr be a basis of K over E. Then for each

y ∈ K there are ci ∈ E such that

y = c1x1 + ...+ crxr

Consider the r × n matrix (τj(xi)) with rank ≤ r < n. Hence there are ξi ∈ K not
all trivial such that ξ1τ1(xi) + ...+ ξnτn(xi) = 0 for all 1 ≤ i ≤ n.

ξ1τ1(x1) + ...+ ξnτn(x1) = 0
...

ξ1τ1(xr) + ...+ ξnτn(xr) = 0

Multiply the ith equation above by ci ∈ E. Since E = KH , τj(ci) = ci. Then
ξ1τ1(c1x1) + ...+ ξnτn(c1x1) = 0

...

ξ1τ1(crxr) + ...+ ξnτn(crxr) = 0

hence ξ1τ1(y) + ...+ ξnτn(y) = 0 for all y ∈ K. According to the Lemma 3.7 ξi = 0.
A contradiction.

Step 2: [K : E] ≤ n.
We prove all n + 1 elements of K are linearly dependent over E. Assume

v1, ..., vn+1 ∈ K with vi ̸= 0 for all i = 1, ..., n+ 1. Then we consider the n× (n+ 1)
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matrix (τi(vj)) whose rank ≤ n < n+ 1. Hence there are ci ∈ K not all trivial such
that c1τi(v1) + ...+ cn+1τi(vn+1) = 0 for all 1 ≤ i ≤ n. We may just assume c1 ̸= 0.

c1τ1(v1) + ...+ cn+1τ1(vn+1) = 0
...

c1τn(v1) + ...+ cn+1τn(vn+1) = 0

Note since H is a group, {τiτ1, ..., τiτn} will still be H, which means if a = τ1(x)+...+
τn(x), x ∈ K then a ∈ E, because τi(a) =

∑
j τiτj(x) =

∑
j τj(x) = a. Moreover if

x ̸= 0, then there exists a λ ∈ K∗ such that a = τ1(λx)+ ...+ τn(λx) ̸= 0. Otherwise
τ1 + ...+ τn = 0 on K, which is impossible according to the Lemma 3.7.

Since λc1τi(v1)+ ...+λcn+1τi(vn+1) = 0 as well for all 1 ≤ i ≤ n, after choosing λ
such that τ1(λc1)+ ...+τn(λc1) ̸= 0, we can just assume a1 = τ1(c1)+ ...+τn(c1) ̸= 0.
Applying τj to the system above, we obtain

τj(c1)τjτ1(v1) + ...+ τj(cn+1)τjτ1(vn+1) = 0
...

τj(c1)τjτn(v1) + ...+ τj(cn+1)τjτn(vn+1) = 0

which is equivalent to the original one since {τjτ1, ..., τjτn} = H. And we have

τj(c1)τi(v1) + ...+ τj(cn+1)τi(vn+1) = 0

for all 1 ≤ i ≤ n. Then ai =
∑

j τj(ci) ∈ E are also the solution of such system,

which means a1τi(v1) + ...+ an+1τi(vn+1) = 0. Hence a1v1 + ...+ an+1vn+1 = 0 where
a1 ̸= 0, which means {v1, ..., vn+1} are dependent over E.

Step 3: K/E is Galois i.e. normal and separable.
Since [K : E] = n, K/E is finite. Let u ∈ K and P is the minimal polynomial

of u over E. Define O := H-orbit of u i.e. {τi(u)|τi ∈ H} with |O| ≤ n. Let
Q :=

∏
α∈O(X − α). Since {τjτ1, ..., τjτn} = H, {τjτ1(u), ..., τjτn(u)} = O = τj(O).

Then τj : O → O is surjective. But since |O| is finite, τj is injective as well. Hence
it’s a bijection. Then Q =

∏
α∈O(X − τj(α)) = τj(Q), which means all coefficients Q

are in E. H is actually a subgroup, idK ∈ H. Therefore u ∈ O and Q(u) = 0. P |Q.
Since all roots of Q are different and in K, all roots of P are then different and in
K. Thus K/E is normal and separable.

Remark 3.8. Note if H in the lemma above is not a subgroup, then the step 2
will not be true. Assume F is a field and F (t) is the field of rational functions over
F . Consider the automorphism f : F (t) → F (t), g(t) 7→ g(t + 1). We suppose

g(t) = u(t)
v(t)

where u(t), v(t) ∈ F [t] and (u(t), v(t)) = 1. If g(t) = g(t + 1), then
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u(t)
v(t)

= u(t+1)
v(t+1)

⇒ u(t)v(t+ 1) = u(t+ 1)v(t). Since (u(t), v(t)) = 1, v(t)|v(t+ 1). But

deg(v(t)) = deg(v(t+1)), then v(t+1) = v(t). v(t) = 0⇔ v(t+1) = 0. Hence if v(t)
has a root α in F̄ , then α+1 is a root of v(t) as well, which means v(t) has infinitely
many roots. It’s impossible. Thus v(t) has no roots and then v(t) ∈ F . The same
argument implies u(t) ∈ F and then g(t) ∈ F . Therefore the subfield fixed by f is
just F . But [F (t) : F ] =∞.

Now we state the most important theorem in this section.

Theorem 3.9 (Galois Correspondence). If K/F is finite Galois, then there is a
one-to-one correspondence

{subgroups H of Gal(K/F )} ←→ {subfields E of K containing F}
H 7−→ KH

Gal(K/E)←− [ E (2)

Moreover E/F is Galois iff Gal(E/F ) is a normal subgroup of Gal(K/F ) and we
have the following one-to-one correspondence

{normal subgroups of Gal(K/F )} ←→ {Galois subextensions}

where Gal(E/F ) ∼= Gal(K/F )/Gal(K/E).

For simplicity we prove the following lemma first.

Lemma 3.10. If K/F is finite Galois, then KGal(K/F ) = F .

Proof. Obviously F ⊆ KGal(K/F ). Now we suppose u ∈ KGal(K/F ), and P is its
minimal polynomial over F . If v is a root of P in F̄ , according to the Lemma 2.7
there is a unique map F (u) → F̄ , u 7→ v. From the Proposition 2.14, this map can
be extended to be τ : K → F̄ , τ(u) = v. Since K/F is normal, τ(K) ⊆ K. Then
τ(u) = v ∈ K. But u ∈ KGal(K/F ) and τ ∈ Gal(K/F ), then v = τ(u) = u. P is
separable ⇒ P = X − u, then u ∈ F .

Proof of Theorem 3.9. Step 1: F ⊆ E ⊆ K. K/E will be finite Galois. Then
KGal(K/E) = E.

Step 2: We prove Gal(K/KH) = H. It’s obvious to see H ⊆ Gal(K/KH). But
according to the lemma of E. Artin and Remark 3.3, |H| = [K : KH ] = |Gal(K/KH)|,
hence H = Gal(K/KH).

Step 3: We prove E/F is Galois iff Gal(K/E) is normal. Let τ ∈ Gal(K/F ),
F ⊆ τ(E) := {τ(x)|x ∈ E} which is a subfield of K. Given any σ ∈ Gal(K/E),
τστ−1 ∈ Gal(K/τ(E)). And given any ξ ∈ Gal(K/τ(E)), τ−1ξτ ∈ Gal(K/E). Hence

Gal(K/τ(E)) = τ ·Gal(K/E) · τ−1
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If E/F is Galois, especially E/F is normal. τ |E : E → τ(E) ↪→ F̄ is an F -
embedding. Then τ(E) = E, for all τ ∈ Gal(K/F ). On the other hand if τ(E) = E
for all τ ∈ Gal(K/F ), since any F -morphism ι : E → F̄ can be extended to be
some K → F̄ and K/F is normal, ι : E → F̄ can be extended to be an element
τ ∈ Gal(K/F ). τ |E = ι but according to the assumption τ(E) = E then ι(E) = E.
Hence E/F is normal.

Therefore E/F is Galois iff τ(E) = E for all τ ∈ Gal(K/F ) iff Gal(K/E) =
τ · Gal(K/E) · τ−1 for all τ ∈ Gal(K/F ) iff Gal(K/E) is a normal subgroup. The
second “iff” comes from the Galois correspondence we have proved in Step 1 and
Step 2.

Corollary 3.11. If K/F is a finite separable field extension, then there are only
finitely many subfields E of K containing F .

Proof. According to Remark 3.4, we could choose K ′ to be the Galois closure of K/E
which is the normal closure of finite dimension. F ⊆ K ⊆ K ′, we can only prove
there are finitely many subfields between F andK ′. From the Galois correspondence,
the number of subfields is |Gal(K ′/F )| = [K ′ : F ] <∞.

Theorem 3.12 (Primitive Element). If K/F is finite separable, then K = F (u) for
some u ∈ K.

Proof. Step 1: Suppose F is a finite field. Then K is a finite field as well. According
to Remark 2.37, K = Fq for some q = pm. Corollary 2.39 tells us F×q =< ξ > is
cyclic. Hence Fq = Fp(ξ) = F (ξ).

Step 2: Suppose F is an infinite field. Since K is finite over F , we can write K =
F (u1, ..., un)for ui ∈ K. If n = 1 there is nothing to prove. By induction it suffices
to prove the case n = 2, i.e. K = F (u1, u2). For any r ∈ F , consider the subfield
F (u1 + ru2). Corollary 3.11 tells us that there are only finitely many intermediate
subfields between F and K. and by assumption there are infinitely many elements
in F , there must exist r1, r2 ∈ F such that F (u1 + r1u2) = F (u1 + r2u2) = F ′ with
r1 ̸= r2. Then (r1 − r2)u2 ∈ F ′, and consequently u1, u2 ∈ F ′.

In general, such primitive element is difficult to find.

Exercise 3.13. Let K = Fp(x, y) the field of rational functions in two variables. Let
F = Kp. Prove that (1): K is not a simple extension of F ; (2): There are infinitely
many intermediate fields between K and F .

Proposition 3.14. (1). Assume E/F and K/F are finite Galois extensions. Then
E ·K/F is finite Galois and the morphism

φ : Gal(E ·K/K) −→ Gal(E/E ∩K) ≤ Gal(E/F )
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τ 7−→ τ |E
is an isomorphism

E ·K

E K

E ∩K

F

finite Galois

finite Galois
finite Galois

(3)

(2). The morphism

ψ : Gal(E ·K/F ) −→ Gal(E/F )×Gal(K/F )

τ 7−→ (τ |E, τ |K)

is injective. Moreover if E ∩K = F then ψ is surjective hence an isomorphism.

Proof. (1). According to Corollary 2.19, we know E ·K/F is normal. And according
to the Proposition 2.27, E · K/F is separable. Hence E · K/F is Galois. Since
E ·K = F (E,K), E,K are finite over F , E ·K/F is finite as well. Hence E ·K/F
is finite Galois.

Given any τ ∈ Gal(E · K/K), τ |E : E → E · K ↪→ F̄ . Since E/F is normal,
τ(E) ⊆ E. Hence τ |E ∈ Gal(E/E∩K) is well defined. If τ |E = idE, since τ |K = idK
it follows that τ = idE·K . φ is injective.

On the other hand, imφ is a subgroup of Gal(E/E ∩ K) and Eimφ = (E ·
K)Gal(E·K/K) ∩ E = K ∩ E. Then imφ = Gal(E/E ∩K).

(2). Obviously, ψ is well defined and if τ |E = idE, τ |K = idK , then τ = idE·K .
Hence φ is injective. If E ∩K = F , assume (σ1, σ2) ∈ Gal(E/F )×Gal(K/F ). Since
F = E ∩ K, by (1). σ1 and σ2 can be extended to be σ′1 ∈ Gal(E · K/K) and
σ′2 ∈ Gal(E ·K/E) respectively. Let τ = σ′2 ◦σ′1 ∈ Gal(E ·K/F ). τ |K = σ′2 ◦σ′1|K =
σ′2 ◦ idK = σ′2|K = σ2. τ |E = σ′2 ◦ σ′1|E = σ′2 ◦ σ1 = σ1.

Definition 3.15. A Galois extension is called abelian (resp. cyclic) if the Galois
group is abelian (resp. cyclic).

Remark 3.16. If K/F is finite abelian, since any subgroup of an abelian group is
normal, for any intermediate field E between F and K, E/F is finite abelian.
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Remark 3.17. If we assume Ei; i ∈ I is a family of intermediate fields of F̄ /F such
that Ei/F is an abelian Galois extension. Then consider the morphism

Gal(F (∪iEi)/F )→
∏
i

Gal(Ei/F ), τ 7→ (τ |Ei)i∈I

which is injective since F (∪iEi) is the union of all F (u1, ..., un) where uj ∈ some Ei.
Hence Gal(F (∪iEi)/F ) is abelian. Since uj ∈ some Ei, uj is separable over F . Then
F (u1, ..., un)/F is separable, F (∪iEi)/F is separable. And consider the F -embedding
F (∪iEi) ↪→ F̄ , its restriction on Ei will be Ei → Ei which means F (∪iEi) →
F (∪iEi). Hence F (∪iEi)/F is normal. F (∪iEi)/F is an abelian Galois extension.

Using Zorn’s lemma, it’s obvious to see there is a maximal abelian Galois ex-
tension F ab/F , which is unique according to the statement above. Then if K/F
is any abelian Galois extension, then K ⊆ F ab. In general F ab/F is an infinite
field extension. And in the infinite Galois theory (Remark 3.94) we can prove
Gal(F ab/F ) ∼= Gal(F̄s/F )

ab where F̄s is the separable closure of F and the latter
is the abelianlization of profinite groups.

Remark 3.18. The statement above also proves that K/F is a/an (abelian) Galois
extension iff it’s a union of finite (abelian) Galois extensions over F .

Remark 3.19. Gal(Q/Q) is one of the most mysterious Galois groups in mathe-
matics and note Q/Q is separable since it has characteristic zero. It’s expected that
every finite group occurs as a quotient of it. And Grothendieck’s Long March through
Galois Theory is trying to understand Gal(Q/Q) via a concrete and geometric way.
On the other hand, the Kronecker-Weber theorem states that any finite abelian ex-
tension of Q is contained in a cyclotomic extension. Extension fields of Q constructed
by adjoining a root of unity are called cyclotomic fields. Then Qab is obtained by
adjoining all roots of unity. If we assume Q(n) = Q(e2iπ/n), then

Gal(Qab/Q) ∼= lim
←−

Gal(Q(n)/Q) ∼= lim
←−

(Z/nZ)× ∼= Ẑ×

where Ẑ = lim
←−

Z/nZ. It’s the subject of class field theory.

There is a local viewpoint as well, which is the subject of local class field theory.
The p-adic number field Qp is defined to be the quotient field of Zp which is the
set of formal sums

∑∞
k=0 akp

k. The local Kronecker-Weber theorem asserts that any
abelian extension of Qp is contained in a cyclotomic extension. A local number field
F is a finite dimensional extension of Qp, whose ring of integers is denoted by OF .
Then in local class field theory

Gal(F ab/F ) ∼= F̂× ∼= Ẑ×OF
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We advise readers to consult the homepage of Milne for details. https://www.

jmilne.org/math/index.html. These contents above are all contained in his notes
Algebraic Number Theory and Class Field Theory.

Example 3.20. We study the Example 3.5 in details here. The Galois closure
(normal closure) of Q( 3

√
2)/Q is K = Q( 3

√
2, ξ3) = Q( 3

√
2,
√
3i).

K

Q( 3
√
2) Q(ξ3)

Q

finite Galois of degree 3

finite Galois of degree 2

ξ3 = −1
2
+ 1

2

√
3i, ξ23 = −1

2
− 1

2

√
3i. [Q(ξ3) : Q] = [Q(

√
3i) : Q] = 2, which

means |Gal(Q(ξ3)/Q)| = 2 and then Gal(Q(ξ3)/Q) ∼= Z/2Z. |Gal(K/Q(ξ3))| = 3,
then Gal(K/Q(ξ3)) ∼= Z/3Z. Assume G = Gal(K/Q) and then it’s not abelian since
Q( 3
√
2)/Q is not Galois. We prove G ∼= S3.
Let r ∈ Gal(K/Q(ξ3)) such that r(ξ3) = ξ3, r(

3
√
2) = 3

√
2ξ3.Then r

2( 3
√
2) = 3

√
2ξ23 ,

r3 = 1. Suppose a ∈ Gal(K/Q( 3
√
2)) such that a( 3

√
2) = 3

√
2, a(ξ3) = ξ23 . a

2(ξ3) =
ξ43 = ξ then a2 = 1. On the other hand

ara(
3
√
2) = ar(

3
√
2) = a(

3
√
2ξ3) =

3
√
2ξ23

ara(ξ3) = ar(ξ23) = a(ξ23) = ξ43 = ξ3

then ara = r2. S3
∼= G = {1, a, r, r2, ar, ar2|ara = r2}. Then subgroups of G are

{1, ⟨r⟩, ⟨a⟩, ⟨ar⟩, ⟨ar2⟩, G}

Only < r > is nontrivial and normal. Using the Galois correspondence and the con-
nection between field dimensions and the number of elements in groups, we conclude:

H ∈ {1, ⟨r⟩, ⟨a⟩, ⟨ar⟩, ⟨ar2⟩, G}

KH ∈ {K,Q(ξ3),Q(
3
√
2),Q(

3
√
2, ξ3),Q(

3
√
2, ξ23),Q}

Exercise 3.21. Let K = Q(ω, i), where ω = 4
√
2 and i2 = −1. Show that K/Q is

Galois and determine G = Gal(K/Q). Write down all subgroups of G and for each
subgroup H, the corresponding subfield KH .

Exercise 3.22. Let ξ5 be a primitive 5th root if unity and K = Q(ξ5). Prove K/Q
is a Galois extension with Galois group isomorphic to Z/4Z. Determine KH for each
subgroup H of Gal(K/Q).
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3.1 Galois Groups of Finite Fields

Recall contents of the Section 2.5 about finite fields. All finite field F is the splitting
field of some Xq −X over Fp where q = pn, p = char(F) > 0. Then

Fq = {all roots of Xq −X}

If there is a field extension Fpn ⊆ Fpm and assume [Fpm : Fpn ] = r, then pm = (pn)r =
pnr, hence n|m. On the other hand if m = n · r, since F×pn is cyclic and every root of

Xpn−X is a roof of Xpnr−X, then there exists a natural embedding Fpn ⊆ Fpm ⊆ Fp.

Theorem 3.23. If q is a power of p, then Fqd/Fq is finite Galois with

Gal(Fqd/Fq) ∼= Z/dZ

cyclic, generated by the Frobenius morphism Frob : x 7→ xq for x ∈ Fqd.

Proof. Fqd/Fp is the splitting filed of Xqd − X with all roots different. Hence it’s
finite Galois. Especially Fqd/Fq is finite Galois with |Gal(Fqd/Fq)| = [Fqd : Fq] = d.

Next we prove Frob ∈ Gal(Fqd/Fq) has order d. Since p|q, (x + y)q = xq + yq

and (x − y)q = xq − yq. And any element of Fq is a root of Xq − X. Hence
Frob is an automorphism with Fq fixed. If m is the order of Frob, then Frobm =
idF

qd
, x 7→ xq

m
= x for all x ∈ Fqd . There will be an embedding Fqd ⊆ Fqm . Therefore

d|m, d ≤ m. Thenn d = m.

Exercise 3.24. Write down an irrreducible polynomial of degree 2 in F3[X], say
f(X). Write down the multiplication table for F×32 , by identifying F32 with F3[X]/(f).

3.2 Cyclotomic Extension

Let ξn = e2iπ/n be the n-th root of unity 1. Then all ξkn, 0 ≤ k ≤ n− 1 are different.
The cyclotomic extension is defined to be Q(ξn)/Q.

Fact 3.25.

(1) The set of roots of Xn − 1 is {ξkn|0 ≤ k ≤ n − 1} and Q(ξn)/Q is finite Galois
since it’s a splitting field of a polynomial with all roots different.

(2) The primitive n-th root of unity 1 is defined to be a generator of the cyclic group
{ξkn|0 ≤ k ≤ n − 1}. Then ξkn is primitive iff (k, n) = 1. Hence there are exactly
ϕ(n)’s primitive roots, where ϕ(n) is the Euler’s function, ϕ(n) = n

∏
p|n(1−

1
p
).

In the following, we want to compute Gal(Q(ξn)/Q) and the process will need
Gauss Lemma.
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Lemma 3.26 (Gauss). Let R be a unique factorization domain and h ∈ R[X] a
monic polynomial. If there is a factorization h = f · g such that monic polynomials
f and g are in Q(R)[X], then f, g ∈ R[X].

We assume the minimal polynomial of ξn over Q is P (X) ∈ Q[X]. We define the
cyclotomic polynomial of n to be Φn(X) =

∏
ξ primitive(X − ξ). If τ ∈ Gal(Q(ξn)/Q),

then τ sends n-th primitive roots to n-th primitive roots. Hence τ(Φn(X)) = Φn(X),
which means all coefficients of Φn(X) are inQ. Then Φn(X) ∈ Q[X] and Φn(X)|Xn−
1 in Q[X], hence Φn(X)|Xn − 1 in Z[X].

Example 3.27. Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 +X + 1, Φ4(X) =
X2 + 1.

Next we will prove P (X) = Φn(X).

Lemma 3.28. Let P (X) be the minimal polynomial of ξn over Q. If p is a prime
with p ∤ n and u is a root P (X), then up is a root of P (X) as well.

Proof. If Q[X], Xn−1 has a factorization Xn−1 = P (X)Q(X), then P (X), Q(X) ∈
Z[X]. We assume up is not a root pf P (X). Then up is a root of Q(X) and u is a root
of Q(Xp). But P (X) is the minimal polynomial of u, P (X)|Q(Xp) in Z[X]. Consider
this relation in Fp. If we suppose in Z[X], Q(Xp) = Xpn+an−1X

p(n−1)+ ...+a0, since

∀a ∈ Fp, a
p = a, then in Fp[X], Q(Xp) = Q(X)

p
. Therefore P (X)|Q(X)

p
in Fp[X].

If α ∈ Fp is a root of P (X)⇒ α is a root of Q(X), which means α is a multiple root

of Xn − 1 ∈ Fp[X]. But (Xn − 1)′ = nX
n−1 ̸= 0 and then Xn − 1 has no multiple

roots. A contradiction!

Theorem 3.29.

(1) Φn(X) is irreducible hence Φn(X) = P (X).

(2) Gal(Q(ξn)/Q) ∼= (Z/nZ)×, hence |Gal(Q(ξn)/Q)| = ϕ(n).

Proof. (1). Since ξn is a root of Φn, P |Φn. To prove Φn = P , it’s equivalent to prove
every n-th primitive roots are roots of P as well. Assume k =

∏
pi prime p

ri
i with

ri > 1 and (k, n) = 1. Then pi ∤ n. The lemma above implies ξpin is also a root of P .
Using the lemma above by induction, we see ξkn is a root of P .

(2). |Gal(Q(ξn)/Q)| = degΦn = ϕ(n). For 1 ≤ k ≤ n − 1 with (k, n) = 1, we
define τk : ξn 7→ ξkn. Since Φn is irreducible and separable with all roots different, we
know

Gal(Q(ξn)/Q) = HomQ(Q(ξn),Q(ξn)) = {τk|1 ≤ k ≤ n− 1, (k, n) = 1}

hence Gal(Q(ξn)/Q) ∼= (Z/nZ)×.
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Fact 3.30. We recall some facts about the group (Z/nZ)×. Assume n = pk11 · ... · pkrr
with ki > 0, then

(Z/nZ)× ∼= (Z/pk11 Z)× × ...× (Z/pkrr Z)×

For (Z/pkZ)× with p prime there are two conditions:

1. If p ≥ 3, (Z/pkZ)× ∼= Z/(p− 1)Z× Z/pk−1Z is cyclic.

2. If p = 2, (Z/2Z)× = {1}, (Z/22Z)× = {1, 3}, (Z/23Z)× = {1, 3, 5, 7} ∼= Z/2Z×
Z/2Z. For k ≥ 3, (Z/2kZ)× ∼= Z/2Z× Z/2k−2Z.

3.3 Compass and Straightedge Construction

In the compass and straightedge construction, we can only use straightedge to con-
struct the line passing through two given points and use compass to construct a circle
with given center O and radius r > 0.

New points have only three source:

1. Intersection of two lines.

2. Intersection of a line and a circle.

3. Intersection of two circles.

Remark 3.31 (Standard Construction). In elementary plane geometry, there are
two standard constructions.

(a) Given a segment AB, we can construct a circle with diameter AB.

A B

(4)

(b) Given a line l and a point P not in l, we can construct a new line l′ passing
through P such that l′//l or l′ ⊥ l. At first draw a circle at the center P with radius
big enough to intersect l with A and B. Then the process (a) will give the middle
point C of AB. PC ⊥ l. Draw any other line l′′ ⊥ l. We construct l′′′ ⊥ l′′ passing
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through P , then l′′′//l.

A B

P

C

(5)

Definition 3.32. (a, b) ∈ R2 is called constructible if we can construct it from the
points O = (0, , 0) and (1, 0), using compass and straightedge. And a real number
a ∈ R is constructible if (a, 0) ∈ R2 is constructible.

It’s obvious to see a point (a, b) ∈ R2 is constructible iff a and b are constructible
as real numbers. If the subset of constructible numbers of R is denoted by C, the
subset of constructible points in R2 will C × C.

Proposition 3.33.

(1) C is a subfield of R containing Q.

(2) If c ∈ C, then
√
c ∈ C.

Proof. (1). Since any field with characteristic 0 contains Q as a subfield, it is enough
to prove C is a field. If c ∈ C, drawing a circle at the center O = (0, 0) with radius
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r = c, we see −c ∈ C. If a, b ∈ C, we construct ab and a−1 in the following picture:

a

−1
Oa−1

1

b

ab

(6)

hence C is a field.
(2). If c ∈ C,

√
c is constructed as follows:

O 1 + c1

√
c

c−1
2

(7)

In the following we study the connection between constructible numbers in R
and field extensions over Q. Finally we will use these theorems to solve four difficult
problems in ancient Greece.

Let K ⊆ R be subfield. The plain of K means K ×K ⊆ R× R.

• A line in K is a line in R2 joining two points in the plain of K.

• A circle in K is a circle in R2, whose center lies in K ×K and radius is in K.

Lemma 3.34.
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(1) The intersection of two lines in K is empty or a point in K ×K.

(2) The intersection of a line and a circle in K is empty, one point or two points in
the plain of K(

√
u), where u ∈ R.

(3) The intersection of two circles in K is empty, one point or two points in the plain
of K(

√
u), where u ∈ R.

Proof. (1). Given two point (a, b), (c, d) ∈ K ×K, the line passing through them are
(b − d)(x − a) − (a − c)(y − b) = 0. All coefficients of this line equation are in K.
Hence the intersection of two lines in K is empty or a point in K ×K.

(2) and (3). The equation of a circle in K is (x − a)2 + (y − b)2 = r2, where
x, b, r ∈ K. Hence the intersection of a line and a circle or two circles in K is to
solve an equation of degree 2.

Theorem 3.35. A real number c ∈ C iff there is a tower of fields Q = K0 ⊆ K1 ⊆
... ⊆ Kn ⊆ R satisfying the following two conditions

(i) c ∈ Kn.

(ii) [Ki+1 : Ki] = 2, which means Ki+1 = Ki(
√
ui+1) with ui+1 > 0.

In particular if c is constructible, then c is algebraic over Q and [Q(c) : Q] is a power
of 2.

Proof. First we prove the part of ⇒. Assume c ∈ C and (c, 0) is constructible in
R2. Then (c, 0) can be constructed in finitely many steps drawing a line or a circle.
In every step, new points are produced as the intersection of two lines, a line and a
circle or two circles, which means they will lie in the original plain of Ki or in the
plain of Ki(

√
u) according to the lemma above. This proves the part of ⇒.

⇐: Conversely if we assume such tower of fields exist, then the minimal poly-
nomial of c over Kn−1 will be X2 + aX + b ∈ Kn−1[X]. Then (c, 0) will be the

intersection point of the circle (X + a
2
)2 + Y 2 = a2

4
− b and the x-axis. According to

the Proposition 3.33, if u, v are constructed, uv, u + v or u− v will be constructed
then. Since a, b is a linear combination of 1 and

√
un−1 over Kn−2, the problem is

reduced to construct
√
un−1 over Kn−2. But (

√
un−1, 0) is the intersection of the

circle X2 + Y 2 = un−1 and the x-axis, where un−1 ∈ Kn−2. The problem will then
be reduced to construct

√
un−2. After finitely many steps we see c is constructible.

Consider Q ⊆ Q(c) ⊆ Kn, then [Q(c) : Q]|[Kn : Q] = 2n and [Q(c) : Q] = 2k.

Remark 3.36. The converse of the last statement of the theorem above is also true.
If K ⊆ R is a subfield with [K : Q] = 2n then K ⊆ C.
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Proof. First we replace K by its Galois closure K ′ over Q. Given any u ∈ K, the
degree of the minimal polynomial P of u over Q is a power of 2. If P has a root v not
in K, then the minimal polynomial Q of v over K divides P hence whose degree is a
power of 2 as well. Then we will have [K(v) : Q] = 2n

′
. Since the Galois closure K ′

of K/Q is just the normal closure of it, after finitely many steps of simple algebraic
extension, we conclude [K ′ : Q] is a power of 2 as well.

Now we prove any group G of order 2n, has a subgroup of index 2. Assume
the order of a ∈ G is maximal among all elements of G. If the order of a is 2r,
r ≥ 1, we define the subgroup H := {x ∈ G|ord(x) ≤ 2r−1}. It’s obvious to see H is
actually a proper subgroup of G. For any g ∈ G, h ∈ H, (ghg−1)d = gdhdg−d. Then
ord(ghg−1) ≤ 2r−1, ghg−1 ∈ H. Thus H is normal in G, H ⊴ G. Then consider
groups H and G/H whose orders are strictly smaller than 2n. The same process
above will imply a sequence H ′ ⊴ H ⊴ H ′′ ⊴ G .And we can refine it to obtain the
following series:

1 = H0 ⊴H2 ⊴ ...⊴Hn−1 ⊴Hn = G

such that Hi+1/Hi is cyclic with order 2. Especially there is a normal subgroup H
of G such that |G/H| = 2.

Since |Gal(K ′/Q)| = 2m, there is a normal subgroup H ⊆ Gal(K ′/Q) with
|Gal(K ′/Q)/H| = 2 . Then consider Q ⊆ K ′H ⊆ K ′, where [K ′ : K ′H ] = 2 and
[K ′H : Q] is a power of 2 as well. Moreover since H is normal, K ′H/Q is finite Galois,
continuing this process we will finally obtain a sequence of fields Q = K ′0 ⊆ K ′1 ⊆
... ⊆ K ′n = K ′, with [K ′i+1 : K

′
i] = 2. The Theorem 3.35 implies K ⊆ K ′ ⊆ C.

Now let us apply the Theorem 3.35 and Remark 3.36 to four problems in ancient
Greece about compass and straightedge construction.

(1). The first one is about squaring a circle. We want to construct a square
whose area is equal to the area of a given circle. This problem is equivalent to say
whether

√
π is constructible or not. The answer is negative since π is not algebraic

over Q, and thus
√
π is not algebraic over Q as well.

(2). The second one is about doubling the cube. Given a cube, we want
to construct a new cube with twice the volume. This problem is equivalent to say
whether 3

√
2 is constructible or not. Obviously [Q( 3

√
2) : Q] = 3 ̸= 2n. Hence the

answer is negative.
(3). The third problem is about trisecting an arbitrary angle, which means

given an angle θ, we want to construct θ/3. An angle θ is called constructible if
there are two lines whose intersection angle is θ. This definition is equivalent to that
(cos θ, sin θ) is constructible. Since sin θ is a solution of the equation X2+cos2 θ−1 =
0, the definition is also equivalent to that cos θ is constructible.

Since cos θ = 4 cos3 θ
3
− 3cos θ

3
, we should consider the polynomial 4X3− 3X − a.

θ/3 is constructible iff the polynomial 4X3−3X−cos θ is not irreducible in Q(cos θ).
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We give two examples here.
If a = cos60◦ = 1

2
, then 8X3 − 6X − 1 is irreducible. If it’s reducible, then it has

a root p
q
in Q with (p, q) = 1. Hence 8p3 − 6pq2 = q3, then p|q, q|p. ⇒ p

q
= 1 or − 1.

But 8− 6− 1 ̸= 0,−8 + 6− 1 ̸= 0. Thus 20◦ is not constructible.
The argument above is standard to prove aX3 + bX2 + c is irreducible in Q[X]

where a, b, c ∈ Z. It’s reducible iff it has a root p
q
∈ Q with (p, q) = 1, then q|a, p|c.

If a = cos 45◦ =
√
2
2
, then 4X3 − 3X −

√
2
2

is not irreducible since −
√
2
2

is a root

of it in Q(
√
2), which means 45◦ can be trisected.

Exercise 3.37. Prove θ = 54◦ is constructible.

(4). The final problem (regular n-gon) is about constructing a regular polygon
with n-sides, which is equivalent to construct θn = 2π

n
or cos θn.

Lemma 3.38. A regular n-gon is constructible iff θn is constructible iff cos θn ∈ C
iff [Q(ξn) : Q] is a power of 2.

Proof. ξn = cos θn + i sin θn, ξ
−1
n = cos θn − i sin θn ⇒ ξn + ξ−1n = 2 cos θn ∈ Q(ξn).

And moreover ξn is a root of X2 − 2 cos θnX − 1.

Q(ξn)

Q(cos θn)

Q

degree=1 or 2

then [Q(cos θn) : Q] is a power of 2 iff [Q(ξn) : Q] is a power of 2. According to the
Remark 3.36 and Theorem 3.35 we see this lemma is true.

A Fermat number has the form Fm = 1+ 22
m
. If it’s a prime as well, then it’s

called a Fermat prime.

Example 3.39. F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 are all Fermat
primes. But F5 = 641× 6700417 and F6 = 274177× 67280421310721 are not primes.
In fact until now we have not discovered any new Fermat primes different from
Fi, 0 ≤ i ≤ 4. Therefore there is a conjecture that Fi, 0 ≤ i ≤ 4 are the only Fermat
primes.

Now the following theorem solves the problem of regular n-gon.
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Theorem 3.40. A regular n-gon is constructible iff n has a prime decomposition

n = 2kp1...ps

such that k, s ≥ 0, pi’s are Fermat primes.

Proof. The Lemma 3.38 tells us θn is constructible iff [Q(ξn) : Q] is a power of 2.
Assume n = 2kpr11 ...p

rs
s , where pi ≥ 3, then

ϕ(n) = ϕ(2k)ϕ(pr11 )...ϕ(prss ) = 2k−1(p1 − 1)pr1−11 ...(ps − 1)prs−1

See the Fact 3.25 (2) for the definition of ϕ. According to the Theorem 3.29,
Gal(Q(ξn)/Q) ∼= (Z/nZ)× then [Q(ξn) : Q] = |Gal(Q(ξn)/Q)| = ϕ(n). It’s a power
of 2 iff ri = 1 and pi − 1 is a power of 2. From the following Lemma 3.41, we know
pi will be a Fermat prime.

Lemma 3.41. A prime number p ≥ 3 is a Fermat prime iff p− 1 is a power of 2.

Proof. Since Fm = 1+ 22
m
, the part of ⇒ is clear. We then assume p− 1 is a power

of 2. Suppose p − 1 = 2n = 22
km where 2 ∤ m, then p = (22

k
)m + 1. Since for any

odd number r > 1, ar + 1 has the following decomposition

ar + 1 = 1− (−a)r = [1− (−a)][1 + (−a) + ...+ (−a)r−1]

Hence if m > 1, then p will not be a prime. Therefore m = 1 and p = 22
k
+ 1 = Fk.

3.4 Solvability of Algebraic Equations

In this section we assume all fields have characteristic 0. From the Lemma 2.22 we
know all algebraic field extensions of characteristic 0 is separable. Hence here the
property of being Galois is equivalent to be normal.

Definition 3.42. A finite field extension K/F is called radical if there exist u1, .., un ∈
K,m1, ...,mn ∈ N+ such that

(1) K = F (u1, ..., un).

(2) um1
1 ∈ F , u

mi
i ∈ F (u1, ..., ui−1) for all 2 ≤ i ≤ n.

This is equivalent to say there is a sequence of fields

F ⊆ F (u1) ⊆ F (u1, u2) ⊆ ... ⊆ F (u1, ..., un) = K

such that F (u1, ..., ui−1) ⊆ F (u1, ..., ui) is a simple radical extension with umi
i ∈

F (u1, ..., ui−1).
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Note a radical extension doesn’t need to be Galois and the polynomial ofXmi−a ∈
F (u1, ..., ui−1)[X] is not necessarily to be irreducible.

Remark 3.43.

(1) Q ⊆ F . Let ξn be a primitive n-th root of unity 1. Then the simple algebraic
extension F (ξn)/F is radical.

(2) Let u be a root ofXm−a ∈ F [X]. Then F (u)/F is radical. But it’s not necessarily
to be normal. For example Q ⊆ Q( 4

√
2) is not normal. But from the Remark 3.4

we see the normal closure N of F (u)/F is generated by all roots of the minimal
polynomial P of u over F which divides Xm − a hence contained in F (u, ξm) which
is the splitting field of Xm − a over F . Since all roots of P have the form uξkm and
(uξkm)

m = a ∈ F , we see the normal closure N/F is radical.

(3) More generally, if K/F is radical but not normal, let K ′ be the normal closure
hence Galois closure of it, then K ′/F will be radical.

Proof. Assume K = F (u1, ..., un) with umi
i ∈ F (u1, ..., ui−1) and Pi is the mini-

mal polynomial of ui over F where 1 ≤ i ≤ n. Then K ′ is generated by all
roots of Pi over F . Define G := Gal(K ′/F ), |G| = [K ′ : F ] < ∞. If τ ∈ G,
then τ(K) = F (τ(u1), ..., τ(un)) is radical over F as well since τ(ui)

mi = τ(umi
i ) ∈

τ(F (u1, ..., ui−1)) = F (τ(u1), ..., τ(ui−1)). If vi is a root of Pi, then there will be an
F -morphism F (ui) → F̄ , ui 7→ vi by the Lemma 2.7, which can be extended to be
K ′ → F̄ according to the Proposition 2.14. But since K ′ is normal, K ′ → F̄ is
actually K ′ → K ′ by the Theorem 2.18. In a summary we have

K ′ = K({τ(ui)|τ ∈ G, 1 ≤ i ≤ n}) =
∏
τ∈G

K(τ(u1), ..., τ(un))

The following Fact 3.44 (3) implies K ′/F is radical.

Fact 3.44.

(1) There are field extensions F ⊆ E ⊆ K. If K/F is radical, then K/E is radical
but E/F may not be radical.

(2) Still consider F ⊆ E ⊆ K. If E/F and K/E are radical, then K/F is radical.

(3) If E/F and E ′/F are radical, then E · E ′/F is radical.

These are similar to the property of being normal. See the Corollary 2.19.

Proof. (1). It’s obvious since F (u1, .., un) = E(u1, ..., un) = K.
(2). E = F (u1, ..., un), K = E(un+1, ..., um) ⇒ K = F (u1, ..., un, un+1, ..., um).
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(3).

E · E ′

E E ′

F

radical

radical radical

F ⊆ F (u1) ⊆ ... ⊆ F (u1, ..., un) = E, ui ∈ E ⇒ ui ∈ E · E ′, E ′ ⊆ E ′(u1) ⊆ ... ⊆
E ′(u1, ..., un) = E · E ′ and umi

i ∈ F (u1, ..., ui−1) ⊆ E ′(u1, ..., ui−1). We see E · E ′/E ′
is radical. The part of (2) implies E · E ′/F is radical.

Definition 3.45. A group G is solvable if G has a series of subgroups

{e} = G0 ≤ G1 ≤ ... ≤ Gn = G

such that Gi ⊴Gi+1 and Gi+1/Gi is abelian.

Example 3.46. Permutation groups S3 and S4 are solvable but A5 is a non-commutative
simple group hence not solvable. Note a group is called simple if it has no proper
normal subgroups except {e}.

There are some basic facts about solvable groups in the following which we’ll not
prove.

Fact 3.47.

(1) If G is solvable, then for any subgroup H ≤ G, H is solvable as well. If moreover
H is normal, then G/H is also solvable.

(2) Conversely if H ⊴G such that H and G/H are normal, then G is normal as well.

(3) If G has a composition series, in particular G is finite, then G is solvable iff the
composition factors of G are cyclic of prime order. Especially if G is finite solvable,
then G will have a normal subgroup of prime index.

The proof of second part of (3) is clear since that means there will be a maximal
normal subgroup H ⊴ G with G/H abelian. Then G/H is a simple abelian group.
Hence G/H must be a cyclic group of prime order.

Now we can state the connection between radical extensions and solvable groups.

Proposition 3.48. If K/F is a finite Galois radical extension, then Gal(K/F ) is
solvable.
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Proof. K = F (u1, ..., un) with umi
i ∈ F (u1, ..., ui−1). We prove this proposition by

induction on n. If n = 1, K = F (u1), u
m1
1 ∈ F . We see K ⊆ F (u1, ξm1) and it’s

enough to prove Gal(F (u1, ξm1)/F ) is solvable by the Fact 3.47 (1). Now we consider
the following diagram:

F (u1, ξm1)

F (ξm1)

F

Since all roots of unity 1 are different, F (ξm1)/F is normal hence Galois. From
Galois Correspondence, we see Gal(F (ξm1)/F )⊴Gal(F (u1, ξm1)/F ) is normal. The
Fact 3.47 (2) implies to prove Gal(F (u1, ξm1)/F ) is solvable, it’s enough to prove
Gal(F (ξm1)/F ) and Gal(F (u1, ξm1)/F (ξm1))

∼= Gal(F (u1, ξm1)/F )/Gal(F (ξm1)/F )
are solvable.

F (ξm1)

Q(ξm1) F

Q

There will be an injection Gal(F (ξm1)/F ) ↪→ Gal(Q(ξm1)/Q) ∼= (Z/m1Z)× by
τ 7→ τ |Q(ξm1). Then Gal(F (ξm1)/F ) is abelian hence solvable. On the other hand
consider an element τ ∈ Gal(F (u1, ξm1)/F (ξm1)). τ is determined by its value on u1.
All roots of Xm1 − um1

1 are u1ξ
k
m1

with 0 ≤ k ≤ m1 − 1. Hence τ(u1) = u1ξ
k
m1

for
some 0 ≤ k ≤ m1 − 1. And since τ(ξm1) = ξm1 , we see Gal(F (u1, ξm1)/F (ξm1)) is an
abelian group thus solvable. This proves Gal(F (u1, ξm1)/F ) is solvable. Therefore
Gal(K/F ) is solvable.

K = F (u1)(u2, ..., un) K(ξm1)

F (u1) F (u1, ξm1)

F

solvable

solvable
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That Gal(F (u1, ξm1)/F ) is solvable is proved above. Since K/F is finite Galois,
then K(ξm1)/F = K · F (ξm1)/F is finite Galois as well according to the Corollary
2.19. ThereforeK(ξm1)/F (u1, ξm1) is finite Galois and radical. By the assumption on
n−1 we see Gal(K(ξm1)/F (u1, ξm1)) is solvable. And because F (u1, ξm1)/F is Galois,
then Gal(F (u1, ξm1)/F ) ⊴ Gal(K(ξm1)/F (u1, ξm1)) is normal ⇒ Gal(K(ξm1)/F ) is
solvable according to the Fact 3.47 (2). Gal(K/F ) is a subgroup of Gal(K(ξm1)/F )
hence solvable as well.

The concept of solvable groups actually comes from the solvability of algebraic
equations.

Definition 3.49. Assume f(X) ∈ F [X] and Split(f) is the splitting field of f(X)
over F . We say f(X) is solvable by radicals if f(X) splits in some radical exten-
sion K/F i.e. Split(f) ⊆ K.

Remark 3.50. Let K = F (u1, ..., un) with umi
i ∈ F (u1, ..., ui−1) and all roots of

f(X) are in K. Then every root of f(X) can be expressed as an iteration of the form

F + m
√
− such as d+ m3

√
c+ m2

√
b+ m1

√
a where a, b, c, d ∈ F .

In the following the Galois group Gal(Split(f)/F ) is denoted by Galf where
f(X) ∈ F [X]. Then the next theorem reveals the relation between the solvabil-
ity by radicals of polynomials and the solvability of groups.

Theorem 3.51. Let f(X) ∈ F [X]. Then f(X) is solvable by radicals iff Galf is
solvable.

Proof of “⇒”. The proof of the part ⇒ is clear. Actually there is a series of fields
F ⊆ Split(f) ⊆ K ⊆ K ′, where K/F is radical and K ′ is the Galois closure of K.
Then Galf ∼= Gal(K ′/F )/Gal(K ′/Split(f)). The Remark 3.43 (3) implies K ′/F is
radical. Then the Proposition 3.48 tells us Gal(K ′/F ) is solvable. Since Split(f)/F
is Galois, Gal(K ′/Split(f)) ⊴ Gal(K ′/F ) is normal. Then from the Fact 3.47 (1),
Galf is solvable.

To prove the part of ⇐ we need a lemma.

Lemma 3.52. Let K/F be a Galois extension with [K : F ] = p prime. Assume F
contains ξp the primitive p-th root of unity 1. Then K/F is a simple radical extension
i.e. ∃u ∈ K such that up ∈ F and F (u) = K.

Proof. In the following we construct such u ∈ K satisfying τ(u) = ξ−1p u, where
Gal(K/F ) = ⟨τ⟩ is a cyclic group of order p. Then τ(u) ̸= u ⇒ u /∈ F and τ(up) =
(ξ−1p u)p = up ⇒ up ∈ F . Since [K : F ] is prime and [K : F (u)] · [F (u) : F ] = [K : F ],
we will have K = F (u).
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Let v ∈ K fixed, u =
∑p−1

i=0 ξ
i
pτ

i(v). Then

τ(u) =

p−1∑
i=0

τ(ξip)τ
i+1(v) =

p−1∑
i=0

ξipτ
i+1(v)

= ξ−1p

p−1∑
i=0

ξi+1
p τ i+1(v) = ξ−1p

p∑
i=1

ξipτ
i(v)

= ξ−1p

p−1∑
i=1

ξipτ
i(v) + ξ−1p ξppτ

p(v)

= ξ−1p

p−1∑
i=1

ξipτ
i(v) + v

= ξ−1p u (8)

Theorem 3.53. Let K/F be a finite Galois extension such that Gal(K/F ) is solv-
able. Then K is contained in a radical extension of F .

Proof. We prove by induction on [K : F ] = n. If n = 2, since any equation X2 +

aX+b = 0 has roots −a+
√
a2−4b
2

and −a−
√
a2−4b
2

, then K/F is itself radical. We assume
this theorem is true for [K : F ] ≤ n − 1, where n ≥ 2. Then consider the following
diagram:

K K(ξp) L

F F (ξp)

degree=n degree≤n

radical

radical

Since Gal(K/F ) is finite Galois, according to the Fact 3.47 (3), it has a normal
subgroup H of index prime p. We fix such prime p and add the primitive p-th root
to K. Then since F ⊆ K, [K(ξp) : K] ≤ [F (ξp) : F ]. But [K(ξp) : K] · [K : F ] =
[K(ξp) : F (ξp)] · [F (ξp) : F ] = [K(ξp) : F ], we conclude [K(ξp) : F (ξp)] ≤ n.

Case 1. If [K(ξp) : F (ξp)] < n, then by assumption K(ξp) is contained in a field
L such that L/F (ξp) is radical. From the Fact 3.44, L/F is radical.

Case 2. [K(ξp) : F (ξp)] = n. We assume E = K(ξp)
H where H ⊴Gal(K/F ) with
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|Gal(K/F )/H| = p.

K(ξp) L

E

F (ξp)

degree<n radical

degree=p

Since H is normal, E/F (ξp) is finite Galois with degree p. The Lemma 3.52 implies
E/F (ξp) is a simple radical extension. [K(ξp) : E] < n, by assumption K(ξp)/E will
be contained in a radical extension L/E. Then L/F (ξp) is radical. Hence L/F is
radical.

This theorem proves the part of ⇐ of the Theorem 3.51. Since Split(f)/F is
finite Galois with Galf = Gal(Split(f)/F ) solvable, Split(f) is contained in a radical
extension K/F .

In general polynomials of degree ≥ 5 are not solvable by radicals. In the following
we focus on algebraic equations of degree 3 and 4 and compute their Galois groups.

Lemma 3.54. Assume f(X) ∈ Q[X] of degree n is separable. Then Galf is isomor-
phic to a subgroup of Sn. Moreover if f(X) is irreducible, then this subgroup of Sn is
transitive and n| |Galf |. A subgroup H of Sn is called transitive if ∀i, j ∈ {1, ..., n},
∃σ ∈ H such that σ(i) = j.

Proof. Suppose {u1, ..., un} are distinct roots of f(X) and Sn is the permutation
group of them. Then since Split(f) = Q(u1, ..., un), we can define Galf ↪→ Sn, τ 7→
τ |{u1, ..., un}. τ is determined by its values on ui. Hence this map is injective.

Next we assume f(X) is irreducible. Then the Lemma 2.7 , Proposition 2.14 and
that Split(f)/Q is normal imply Galf is transitive. The minimal polynomial of u1
over Q is just f(X), hence [Q(u1) : Q] = n. We see n| |Galf | = [Split(f) : Q].

In the next section we will construct polynomials whose Galois groups are Sn.
Here we recall some facts about permutation groups and details can be found in
[Bos18] Section 5.3 and 5.4.

Fact 3.55.

(1) Every element of Sn can be written as the composition of transpositions (i, j).
There will be a group morphism sign : Sn → Z/2Z such that for τ ∈ Sn, if in a de-
composition of transpositions, there are evenly many transpositions, then sign(τ) = 0
otherwise sign(τ) = 1. ker sign is denoted by An and it’s a normal subgroup of index
2.
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(2) Every permutation group Sn is solvable for n ≤ 4, but not solvable if n ≥ 5. To
prove this we need some computations, but the proof is omitted.

[Sn, Sn] = An, for n ≥ 2

[An, An] =


{1} for n = 2, 3

V4 for n = 4

An for n ≥ 5

where [G,G] denotes the commutator subgroup of G and V4 is theKlein four-group
{id, (12)(34), (13)(24), (14)(23)} ⊆ S4.

(3) We then focus on describing subgroups of S3 and S4. In fact subgroups of S3 have
been studied in Example 3.20. We deal with S4 here. In the following is the list of
classes of subgroups of S4.

• S2 ↪→ S4: {id, (12)}, with order = 2, not transitive.

• {id, (12)(34)} with order = 2, not transitive.

• C4 = ⟨(1234)⟩ = {id, (1234), (13)(24), (1432)} cyclic and transitive subgroup bu
not normal.

• V4 = {id, (12)(34), (13)(24), (14)(23)} with order = 4, transitive and normal.

• ⟨(12), (34)⟩ ∼= Z/2Z× Z/2Z not transitive.

• D4 = ⟨(1234), (13)⟩ with order = 8, transitive.

• A3, S3 ↪→ S4 (not transitive).

• A4 transitive with order = 12.

and there is a subnormal series:

{id} ⊆ {id, (12)(34)} ⊆ V4 ⊆ A4 ⊆ S4

we see S4 is solvable.

Now let’s consider algebraic equations of degree 3 and 4. Given a polynomial
f(X) = Xn + an−1X

n−1 + ...+ a0 ∈ F [X], it factors as f(X) =
∏n

i=1(X − xi) where
xi ∈ F̄ . We set

∆(f) =
∏
i<j

(xi − xj)

and let D(f) = ∆(f)2. Then D(f) is called the discriminant of the polynomial
f(X). Note D(f) ̸= 0 iff ∀i ̸= j, xi ̸= xj iff f(X) is separable.

We derive some special formulas for D(f) of algebraic equations f(X) = 0 of
degree ≤ 4 now and it’s not necessary to assume f to be irreducible or separable.
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Example 3.56.

(1) We start with a quadratic polynomial f(X) ∈ F [X], say f(X) = X2 + aX + b.
Since {

x1 + x2 = −a
x1 · x2 = b

we see D(f) = (x1 − x2)2 = (x1 + x2)
2 − 4x1x2 = a2 − 4b.

(2) Let f(X) = X3+ aX2+ bX + c. Replacing X by X − a
3
, f(X) has a simpler form

X3 + pX + q. Using Vieta theorem
x1 + x2 + x3 = 0

x1x2 + x1x3 + x2x3 = p

x1x2x3 = q

we have D(f) = −4p3 − 27q2.

(3) A monic polynomial X4 + a3X
3 + a2X

2 + a1X + a0 has the form f(X) = X4 +
aX2+bX+c when replacing X by X− a3

4
. Then D(f) = 144ab2c−128a2c2−4a3b2+

16a4c− 27b4 + 256c3.

(4) You can find more general formulas for D(f) of polynomials of degree ≥ 5 in
[Bos18] Section 4.4.

Next we assume f(X) ∈ F [X] is irreducible of degree n⇒ ∆(f) ̸= 0. Let σ ∈ Sn,
σ(∆(f)) = (−1)sign(σ)∆(f), where it’s enough to consider σ = (ij), j = i+ k, k > 0.
Then σ(∆(f)) = (−1)2k−1∆(f) = −∆(f). Therefore σ ∈ An iff σ(∆(f)) = ∆(f).
And σ(D(f)) = D(f). Since Split(f)/F is Galois and Galf ⊆ Sn, we see D(f) ∈ F .
In a summary we have proved:

Lemma 3.57. Suppose f(X) ∈ F [X] is irreducible of degree n. Then Galf ⊆ An iff

∆(f) ∈ F iff
√
D(f) ∈ F .

Assume F = Q.

• If deg(f) = 2, then Galf ∼= Z/2Z.

• If deg(f) = 3, then Galf ≤ S3. But 3| |Galf |. We see |Galf | = 3 or 6 ⇒ Galf =
A3 or S3 and Galf = A3 iff ∆(f) ∈ Q.

Example 3.58.

(1) f(X) = X3 − 3X + 1. Then f is irreducible in Q[X] since 1 and −1 are not its
roots. D(f) = −4 · (−3)3 − 27 = 81, ∆(f) ∈ Q. Then Galf = A3.

(2) f(X) = X3 + 3X + 1. Then D(f) = −5× 33. Hence Galf = S3.
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Remark 3.59. Now let’s consider an irreducible quartic polynomial f(X) = X4 +
bX3 + cX2 + dX + e ∈ Q[X], whose roots are x1, x2, x3, x4. Then we consider:

α = x1x2 + x3x4
β = x1x3 + x2x4

γ = x1x4 + x2x3

since xi’s are all different, α, β, γ are all different as well. S4 can act on {α, β, γ}.
For σ ∈ S4, σ(α) = xσ(1)xσ(2) + xσ(3)xσ(4). The stabilizer of α, β or γ is a Sylow
2-group. For example Stab(β) =< (1234), (13) >= D4. And we could see V4 is
contained in all of stabilizers of α, β and γ. Hence V4 fixes all of α, β, γ. In fact V4 =
Stab(α)∩Stab(β)∩Stab(γ). Hence the Galois group Gal(Q(x1, x2, x3, x4)/Q(α, β, γ))
is just Galf ∩ V4.

Let g(X) = (X−α)(X−β)(X−γ) which is called the cubic resolvent of f(X).
Since every element σ of S4 which is the permutation group of {x1, x2, x3, x4} just
permutes {α, β, γ}, σ(g) = g. Then ∀τ ∈ Galf , τ(g) = g ⇒ all coefficients of g are in
Q. g(X) ∈ Q[X], whose splitting field is Q(α, β, γ). And Q(α, β, γ)/Q is Galois ⇒
Galf ∩ V4 ⊴Galf is normal, then Galg ∼= Galf/Galf ∩ V4. There is a decomposition:

Q(x1, x2, x3, x4)

Q(α, β, γ)

Q

Galf∩V4

Galf/Galf∩V4

(9)

Lemma 3.60. If f(X) = X4 + bX3 + cX2 + dX + e, then g(X) = X3 − cX2 +
(bd − 4e)X − b2e + 4ce − d2 and D(f) = D(g). In particular if b = 0, f(X) =
X4 + cX2 + dX + e, g(X) = X3 − cX2 − 4eX + 4ce− d2.

The computation is omitted and we state the following important theorem.

Theorem 3.61. Let M = Q(α, β, γ), K = Q(x1, x2, x3, x4),m = [M : Q].

(1) If m = 1, then Galf = V4.

(2) If m = 2, then Galf = C4 or D4. Moreover Galf = D4 iff Galf ∩ V4 acts
transitively on {x1, x2, x3, x4} iff f(X) is irreducible in M [X].

(3) If m = 3, then Galf = A4.

(4) If m = 6, then Galf = S4.
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Proof. See Fact 3.55 (3) for subgroups of S4.
(1). m = 1 ⇒ Galg = 1 ⇒ Galf ∩ V4 = V4 ⇒ Galf ⊆ V4. But {id, (12)(34)} is

not transitive ⇒ Galf = V4.
(2). m = 2 ⇒ |Galg| = 2 ⇒ |Galf/Galf ∩ V4| = 2. If |Galf ∩ V4| = 1, then

|Galf | = 2. But there is no such transitive subgroup of order 2. If |Galf ∩ V4| = 2,
then |Galf | = 4 ⇒ Galf = C4. If |Galf ∩ V4| = 4, then |Galf | = 8 ⇒ Galf = D4.
Galf = D4 iff Galf ∩ V4 = V4 iff Galf ∩ V4 acts transitively on {x1, x2, x3, x4}, since
no proper subgroup of V4 satisfy it. And this is also equivalent to say |Galf ∩V4| = 4
or [K :M ] = 4.

If f(X) is not irreducible in M [X], then for a root x of f(X), the degree of its
minimal polynomial over M is strictly smaller than 4 and it should not be 3 since
3 ∤ 4. It must be 2. Then there will be two roots of f(X) in M(x) say x1, x2. From{

β
x1

= x3 +
x2

x1
x4

γ
x1

= x2

x1
x3 + x4

we see x3, x4 ∈ M(x) as well, which means [K : M ] = 2. Hence when m = 2,
Galf = D4 iff [K :M ] = 4 iff f(X) is irreducible in M [X].

(3). If m = 3, |Galf/Galf ∩ V4| = 3, 3| |Galf |. Then Galf should be A4 or S4.
But |S4/V4| = 6. Then Galf must be A4.

(4). If m = 6, |Galf/Galf ∩ V4| = 6 then Galf should be S4.

Example 3.62.

(1) f(X) = X4 +4X2 +2 ∈ Q[X]. It’s irreducible by Eisenstein’s criterion. Its cubic
resolvent is g(X) = X3 − 4X2 − 8X + 32 = (X − 4)(X2 − 8). Then m = [Q(

√
2) :

Q] = 2. And f(X) = (X2 + 2)2 − 2 = (X2 + 2 +
√
2)(X2 + 2 −

√
2). According to

the Theorem 3.61 (2), Galf = C4.

(2) f(X) = X4 + 2X + x ∈ Q[X]. It’s irreducible by Eisenstein’s criterion. Its cubic
resolvent is g(X) = X3 − 8X − 4. {1,−1, 2,−2, 4,−4} are all not its roots. Hence

g(X) is irreducible in Q[X]. D(g) = −4(−8)3− 27(−4)2 = 1616,
√
D(g) /∈ Q. Then

Galg ∼= S3 according to the Lemma 3.57. m = |S3| = 6. Therefore Galf = S4.

Exercise 3.63. Determine Galois groups of the following polynomials over Q:

(a) X3 − 2X + 3.

(b) X4 + 8X + 12.

(c) X4 + 3X + 3.

Exercise 3.64. Find the Galois group of X6 − 3X2 + 1 over Q.

Exercise 3.65. Let f(X) ∈ Q[X] be an irreducible polynomial of degree 5. List all
(up to isomorphism) subgroups of S5 which can be the Galois group of f .
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3.5 Polynomials with Galois Group Sn over Q

It’s well known that polynomials of degree ≤ 4 are solvable by radicals but polyno-
mials of degree ≥ 5 are not solvable by radicals in general. From the Fact 3.55 (2)
we know any permutation group Sn is solvable for n ≤ 4, but not solvable for n ≥ 5.
Hence according to the Theorem 3.51 if we construct a polynomial whose Galois
group is Sn for n ≥ 5, then we have proved the second part of the first sentence in
this paragraph and this is our task in this section. We first find some criterion for
subgroups of Sn to become Sn actually.

Lemma 3.66. Let G ≤ Sn be a transitive subgroup of Sn. If G contains a 2-cycle
and an (n− 1)-cycle τ , then G = Sn.

Proof. A d-cycle has the form (i1...id). We can assume τ = (23...n), (ij) ∈ G where
j ̸= 1. Since for any σ ∈ Sn, σ · (ij) · σ−1 = (σ(i)σ(j)), from the assumption that
G is transitive, there will exist σ ∈ G such that σ(i) = 1, and then σ · (ij) · σ−1 =
(1σ(j)) ∈ G, σ(j) ̸= 1. Therefore we can suppose (1a) ∈ G where a ∈ {2, ..., n}.

Let τ acts on (1a). τ k · (1a) · τ−k = (τ k(1)τ k(a)) = (1τ k(a)). This implies
(12), (13), ..., (1n) ∈ G. And (i1)(j1)(i1) = (ij) ∈ G. We conclude G = Sn.

This lemma motivates us to find a polynomial whose Galois group contains a 2-
cycle and an (n − 1)-cycle. And it can be constructed locally due to the following
lemma.3

Lemma 3.67. Let f(X) ∈ Z[X] be monic. We fix a prime p and consider f̄ ∈ Fp[X]
where deg(f) = deg(f̄) = n. If f̄ is separable, then Galf̄ ≤ Galf ≤ Sn, where

Galf = Gal(Split(f)/Q) and Galf̄ = Gal(Split(f̄)/Fp).

Before giving a proof here, we sketch the method, which is called Kronecker’s
analysis. If f(X) ∈ Q[X] of degree n has n’s different roots {u1, ..., un}, from the
Lemma 3.54 we know Galf ⊆ Sn. Let E = Split(f). We define the following
polynomial

g(X) =
∏
σ∈Sn

[X − (uσ(1)T1 + ...+ uσ(n)Tn)] ∈ E(T1, ..., Tn)[X]

over the rational field E(T1, ..., Tn) and the linear factors are all different. Then
∀σ ∈ Sn, σ(g) = g. Especially ∀τ ∈ Galf , τ(g) = g. Hence all coefficients of
g ∈ E[T1, ..., Tn, X] are in Q. Hence g ∈ Q[T1, ..., Tn][X]. Assume g = g1...gk, where
gi ∈ Q(T1, ..., Tn)[X] is irreducible. If X − (uσ(1)T1 + ...+ uσ(n)Tn)|gi, then

∀τ ∈ Galf , X − (uτσ(1)T1 + ...+ uτσ(n)Tn)|τ(gi) = gi
3This lemma comes from [Lan02] P274, or you can find details in [Jac85] Section 4.16.
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which means
∏

τ∈Galf
[X− (uτσ(1)T1+ ...+uτσ(n)Tn)] |gi. But

∏
τ∈Galf

[X− (uτσ(1)T1+

...+ uτσ(n)Tn)] is invariant under τ
′ ∈ Galf . Hence it’s in Q(T1, ..., Tn)[X]. Then∏

τ∈Galf

[X − (uτσ(1)T1 + ...+ uτσ(n)Tn)] = gi

This argument implies that g = g1...gk represents the coset decomposition of Galf in
Sn. And we can thus assume g1 =

∏
τ∈Galf

[X − (uτ(1)T1 + ...+ uτ(n)Tn)].

Moreover we consider another action of Sn on gi. For any γ ∈ Sn, γ(gi(T1, ..., Tn, X)) =
gi(Tγ(1), ..., Tγ(n), X). If γ(gi) = gi, then

X − (uσ(1)Tγ(1) + ...+ uσ(n)Tγ(n))

=X − (uσγ−1(1)T1, ..., uσγ−1Tu)

=X − (uτσ(1)T1 + ...+ uτσ(n)Tn), for some τ ∈ Galf

then σγ−1 = τσ ⇒ γ = σ−1τ−1σ. On the other hand for any σ−1τσ where τ ∈ Galf ,
µσ(σ−1τσ)−1 = µτ−1σ. Hence the stabilizer of gi in Sn is exactly σ−1Galfσ, which
is denoted by Stab(gi). Especially Stab(g1) = Galf .

Proof of Lemma 3.67. 0 ̸= D(f̄) ≡ D(f) mod p. Hence D(f) ̸= 0 and f(X) has n’s
different roots. Then we assume {u1, ..., un} and {v1, ..., vn} are different roots of f
and f̄ in C and F̄p respectively. Consider a coefficient h(u1, ..., un) of g(X) defined
above. It’s invariant under Sn. Therefore h(x1, ..., xn) is a symmetric polynomial
which can be expressed as a polynomial h′(s0, ..., sn) where

s0 = 1,

s1 = x1 + ...+ xn
s2 = x1x2 + x1x3 + ...+ xn−1xn
......

sn = x1...xn

Since f(X) ∈ Z[X] is monic, then all si ∈ Z. Hence g(X) ∈ Z[T1, ..., Tn][X]. Accord-
ing to the Gauss’ lemma, we see gi ∈ Z[T1, ..., Tn][X]. Suppose ḡ = g(X) mod p ∈
Fp(T1, ..., Tn)[X]. Then ḡ = ḡ1...ḡk.

Define

g′(X) =
∏
σ∈Sn

[X − (vσ(1)T1 + ...+ vσ(n)Tn)] ∈ Fp(T1, ..., Tn)[X]

we have g′(X) = ḡ. And ḡ = ḡ1...ḡk = g′1...g
′
k′ where g′i’s are irreducible in

Fp(T1, ..., Tn)[X] and represent the coset decomposition of Galf̄ in Sn. Moreover
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we may assume

g′1 =
∏

τ∈Galf̄

[X − (vτ(1)T1 + ...+ vτ(n)Tn)] | ḡi

We then prove Galf̄ = Stab(g′1) ⊆ Stab(gi) = σ−1Galfσ. We suppose there exists
some γ ∈ Sn such that γ(g′1) = g′1 but γ(gi) ̸= gi. Since gi is irreducible, γ(gi) is

irreducible as well. And γ(gi)|γ(g) = g. Then γ(gi) = gj, i ̸= j. But γ(gi) = γ(ḡi),
we see γ(ḡi) = ḡj, and g

′
1 = γ(g′1)|γ(ḡi) = ḡj, which means g

′2
1 |g′ and g′ has multiple

roots. A contradiction! Hence σGalf̄σ
−1 ⊆ Galf .

We know given a k-cycle λ = (a1...ak), µλµ
−1 = (µ(a1)...µ(ak)). From the

Theorem 3.23, we know Galf̄ is cyclic. Decompose the generator of Galf̄as a disjoint
product of ni-cycles. We see after a rearrangement of {v1, ..., vn}, Galf̄ ⊆ Galf .

Remark 3.68. In the proof above if we know the Theorem 4.38 in [Jac85], which says
under the assumption of Lemma 3.67, there will exist a ring morphism Z[u1, ..., un]→
Split(f̄) ⊆ F̄p, inducing a bicjection between the set of roots of f and the set of roots
of f̄ ∈ Fp[X], then the proof may be simpler. Under such ring morphism, we will
have ḡ1 =

∏
τ∈Galf

[X − (vτ(1)T1 + ...+ vτ(n)Tn)].

The Lemma 3.67 is useful because it allows us to add a 2-cycle and an (n−1)-cycle
to Galf , using the method of mod p reduction. To do this, it urges us studying Galf̄
further.

Theorem 3.69 (Dedekind). Under the assumption of Lemma 3.67, if

f̄ = f̄1...f̄r, f̄i ∈ Fp[X]

where f̄i’s are irreducible and monic. Assume di = deg(f̄i). Then Galf̄ is cyclic of
order lcm(d1, d2, ..., dr), containing a product of disjoint cycles of the form σ1...σr,
where σi = (n1...ndi) is a di-cycle.

Proof. Any finite field extension of Fp has the form Fpm .

f̄ splits completely over F̄pm ⇔ f̄i splits completely over F̄pm for all i

⇔ f̄i divides X
pm −X for all i

⇔ di = deg(f̄i) divides m

⇔ lcm(d1, ..., dr) divides m

Choosing a root u of f̄i, Fp(u) = Fpdi ⊆ Fpm iff di|m, according to the first paragraph

of the Section 3.1. We see Fpm is the splitting field of f̄ iff m = lcm(d1, ..., dr). Then
from the Theorem 3.23 Galf̄ = Gal(Fpm/Fp) ∼= Z/mZ where m = lcm(d1, ..., dr),
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generated by the Frob : x 7→ xp. Especially Galf̄i
∼= Z/diZ is generated by Frob and

f̄i has roots

ui, u
p
i , u

p2

i , ..., u
pdi−1

i

where ui is root of f̄i, since Split(f̄i) = Fp(ui) = Fpdi . Then Frob ∈ Galf̄i is a di-cycle.

Then f̄ has roots:

u1, ..., u
pd1−1

1 , u2, ..., u
pd2−1

2 , ..., ui, ..., u
pdi−1

i , ..., ur, ..., u
pdr−1

r

Therefore we can conclude the generator Frob is a product of disjoint cycles of the
form σ1...σr, where σi = (n1...ndi) is a di-cycle.

Now we start to construct a polynomial whose Galois group is Sn.

Theorem 3.70. There is an irreducible polynomial of degree n over Q such that its
Galois group is Sn for all n ≥ 1.

Proof. If n = 1 or 2, this theorem can be checked directly. If n = 3, then X3− 2 has
Galois group S3, see Example 3.20 or Lemma 3.57. Therefore we assume n ≥ 4.

We first construct a monic polynomial f1of degree n satisfying

• f1 mod 2 ∈ F2[X] decomposes as X ·h1 where h1 ∈ F2[X] is irreducible of degree
n− 1.

We explain why f1 always exist. Assume Fpm is a finite field over Fp. From the
Corollary 2.39 we know F×pm is cyclic. Hence we suppose F×pm is generated by α.
Then Fpm = Fp(α). And the minimal polynomial of α over Fp is irreducible of degree
m. And then from the Theorem 3.69, we know Galf̄1 contains an (n− 1)-cycle.

Next we construct a monic polynomial f2 of degree n satisfying

• f̄2 = f2 mod 3 ∈ F3[X] decomposes as h′1 · h′2.

• f̄2 is separable.

• deg(h′1) = n− 2, deg(h′2) = 2. h′2 is irreducible and{
When n is odd, h′1 is irreducible

When n is even, h′1 = X · h′3, where h′3 is an irreducible of degree n− 3

h′1 and h
′
2 always exist. If n is odd, then (2, n− 2) = 1, F32 ∩F3n−2 = F3. And if n is

even, then (2, n− 3) = 1, F32 ∩ F3n−3 = F3. We know Fpm/Fp is separable. Let h′2 is
the minimal polynomial of α, where α is the generator of F×3n−2 . h

′
1 and h

′
3 is defined

similarly. From the first paragraph of Section 3.1 we know h′1 and h′2 will not have
a same root.
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According to the Theorem 3.69 above, we know Galf̄2 contains an element of the
form: {

When n is odd, ((n− 2)-cycle) · (2-cycle) = σ1σ2
When n is even, ((n− 3)-cycle) · (2-cycle) = γ1γ2

Then (σ1σ2)
n−2 = σn−2

2 = σ2 and (γ1γ2)
n−3 = γn−32 = γ2. Then Galf̄2 contains a

2-cycle.
Finally we construct a monic irreducible polynomial f(X) ∈ Z[X] of degree n as

follows:

• f1 ≡ f mod 2.

• f2 ≡ f mod 3.

We choose a polynomial f3 ∈ Z[X] of degree n− 1 such that f(X) = 3f1− 2f2 +6f3
is irreducible by the Eisenstein’s criterion of 5. Assume 3f1 − 2f2 = Xn + f4, where
f4 = an−1X

n−1 + ... + a0. Since 6 ≡ 1 mod 5, we could find bi such that 5|ai + 6bi.
If 25|a0 + 6b0, we replace the b0 by b0 + 5, and then 25 ∤ a0 + 6b0 + 30.

From the Lemma 3.67, Galf̄1 ,Galf̄2 ≤ Galf . Then Galf contains a 2-cycle and
an (n− 1)-cycle. Hence Galf = Sn from the Lemma 3.66.

Example 3.71. Assume n = 4.

(1) In F2[X], X3+X+1 is irreducible since 0 and 1 are not its roots. Then we choose
f1 = X(X3 +X + 1) ∈ Z[X].

(2) In F3[X], let h′2 = X2 +X + 2, which is irreducible since there is no roots in F3.
Let h′3 = X − 1, then h′1 = X(X − 1). f2 = X(X − 1)(X2 +X + 2). Then

3f1 − 2f2 = (3X4 + 3X2 + 3X)− (2X4 + 2X2 − 4X)

= X4 +X2 + 7X

Choose f3 = −X2 − 2X + 5⇒ f = 3f1 − 2f2 + 6f3 = X4 − 5X2 − 5X + 30. We can
also use the Theorem 3.61 to prove Galf = S4.

When n is big enough, this construction will be much more complicated. But if
n is prime, then it may be much more simpler thanks to the following lemma and
theorem.

Lemma 3.72. Assume G ≤ Sp where p is a prime. If G contains a 2-cycle and a
p-cycle, then G = Sn.

Proof. See the Corollary 2.10 for a proof in https://kconrad.math.uconn.edu/

blurbs/grouptheory/genset.pdf
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Theorem 3.73. Let f be an irreducible polynomial of degree p over Q with exactly
two non-real roots in C. Then Galf = Sp.

Proof. If a + bi is a root of f where b ̸= 0, then a − bi is a root as well, since
f(a+ bi) = f(a+ bi). We assume the conjugation function is c. Then c ∈ Galf and
is 2-cycle.

To prove Galf contains a p-cycle, we need the Cauchy’s theorem.

Theorem 3.74 (Cuachy). For a finite group G, if p| |G|, then G has an element of
order p.

Since f is irreducible, if u is a root of f , then p = [Q(u) : Q] | [Split(f) : Q] =
|Galf |. If τ = τ1 · ... · τr is an element in Galf of order p, where τi’s are disjoint
di-cycles. Then τ

p
i = 1⇒ di|p⇒ di = 1 or p, which means τ is a p-cycle. Then from

the lemma above Galf = Sp.

Example 3.75. Assume p = 5. f(X) = X5 − 5X + 2 ∈ Q[X] is irreducible because
consider f(X + 3) = (X + 3)5 − 5(X + 3) + 2, 5|35 − 15 + 2 = 230 but 52 ∤ 230.
f ′(X) = 5X4 − 5 = 5(X2 + 1)(X − 1)(X + 1). f(−1) = 6 > 0, f(1) = −2 < 0.
Then from the graph of f(X), we conclude it has three real roots. Hence it has two
non-real roots. From the Theorem 3.73, Galf = S5. Since S5 is not solvable, then f
is not solvable by radicals.

Exercise 3.76. Show that Qξ7 contains a unique subfield E which is of degree 3
over Q . Show that E is not a radical extension over Q.

Exercise 3.77. Let Fp be the algebraic closure of Fp and let G = Gal(F̄p/Fp).
Frob ∈ G is the Frobenius x 7→ xp. Find an element of G which is not a power of
Frob, i.e. find σ ∈ G such that σ ̸= Frobn for any n ∈ Z.

Note: you may need to refer to the infinite Galois theory.

3.6 Infinite Galois Theory

In the previous sections, we only consider finite Galois extensions. In this section
we consider infinite Galois extension, which is a Galois extension of infinite degree.
And there is a similar theorem compared with Theorem 3.9. To deal with this
infinite theory, we need to equip Gal(K/F ) with a topology. And here we talk about
topological groups first.

Definition 3.78. A group G equipped with a topology is a topological group if

· : G×G→ G, (g, h) 7→ gh

ι : G→ G, g 7→ g−1

are continuous maps.
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Example 3.79. (R,+), (R×,×).

Fact 3.80. Given an element a ∈ G, the left multiplication map is defined to be

La : G
a×id−→ G×G ·−→ G, g 7→ (a, g) 7→ a · g

La is continuous and has the inverse La−1 . Hence it’s a homeomorphism. Dually
there is a concept of right multiplication map Ra which is a homeomorphism as well.

Note: if X is a topological space, then open subsets on X×X are those the union
of the form U × V , where U, V are open in X. In fact the open basis on X ×X is
the class of finitely intersections of the form U × V where U, V is open in X. But
∩i(Ui × Vi) = (∩iUi)× (∩iVi), hence U × V form a basis of X ×X.

Corollary 3.81. If N is a basis of open neighborhoods of 1 ∈ G, then aN is a basis
open neighborhood of a ∈ G.

Proof. From the Fact 3.80, La is a homeomorphism, hence sending open subsets to
open subsets.

From this corollary, to know a topology of a topological group G, it’s enough to
know its basis of open neighborhoods around 1 ∈ G.

Lemma 3.82. G is a topological groups and H ≤ G is a subgroup of G equipped
with the topology of subspaces. Then

(1) H is a topological space as well.

(2) The closure H of H is a subgroup of G. Moreover if H is normal, then H is
normal as well.

(3) G is Hausdorff iff {1} is closed

Proof. (1). It’s trivial.
(2). h ∈ H iff for any open subset U containing h, U∩H ̸= ∅. Assume h1, h2 ∈ H.

We need to prove h = h1h2 ∈ H, h−11 ∈ H. Given an open subset U containing h,
since · : G → G is continuous, ·−1(U) is open in G × G and (h1, h2) ∈ ·−1(U),
then there are open subsets V1, V2 such that hi ∈ Vi and V1 × V2 ⊆ ·−1(U). Then
V1 · V2 ⊆ U . But since hi ∈ H, then Vi ∩ H ̸= ∅. If we assume gi ∈ Vi ∩ H, then
g1g2 ∈ V1 · V2 ∩H, which means U ∩H ̸= ∅. Hence h ∈ H.

Given any open subset W containing h−11 . Since ι : G → G is continuous,
h1 ∈ ι−1(W ) is open. Then ι−1(W ) ∩ H ̸= ∅. If we assume g ∈ ι−1(W ) ∩ H, then
ι(g) = g−1 ∈ W ∩H ̸= ∅. Hence h−11 ∈ H.

If moreover we assume H is normal, then ∀g ∈ G, gHg−1 = H. Then H =
gHg−1 ≤ gHg−1 where gHg−1 is closed. Hence H ⊆ gHg−1 for all g ∈ G. Replace
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g by g−1. Then H ⊆ g−1Hg ⊆ g−1(gHg−1)g = H. Therefore H = gHg−1 for all
g ∈ G. Then H is normal.

(3). If G is Hausdorff, then every one point set is closed especially {1} closed.
Conversely, if {1} is closed, we consider the following function:

τ : G×G id×ι−→ G×G ·−→ G, (g, h) 7→ (g, h−1) 7→ gh−1

Since {1} is closed, W = {1}c = G− {1} is open. Given any two different elements
g, h ∈ G, 1 ̸= gh−1 ∈ W . Then (g, h) ∈ τ−1(W ) is an open subset in G × G.
Hence there exist open subsets U, V ⊆ G such that (g, h) ∈ U × V ⊆ τ−1(W ). And
obviously U ∩ V = ∅, otherwise (a, a) ∈ τ−1(W )⇒ 1 ∈ W . A contradiction!

Lemma 3.83. Assume G is a topological group and H ≤ G, then

(1) If H is open then H is closed.

(2) If H is closed of finite index, then H is open.

(3) If G is compact, then H is open iff H is closed of finite index.

Proof. (1). Let S be the set of representatives of cosets of H in G. Then there is a
coset decomposition

G =
∐
σ∈S

σ ·H

where σ · H is open since H is open and Lσ is a homeomorphism. But G − H =∐
σ ̸=id σ ·H is open as well. Hence H is also closed.

(2). Since H is of finite index, |S| <∞. Then G−H is a finite union of closed
subsets, hence closed as well ⇒ H is open.

(3). We only need to prove if H is open then it’s closed of finite index, under
the assumption that G is compact. Still considering the coset decomposition above
G =

∐
σ∈S σ · H, which is an open covering. Since G is compact, then S is a finite

set.

Given a Galois extension K/F , now we equip Gal(K/F ) with a topology.

Definition 3.84. Define

N := {Gal(K/E)|F ⊆ E ⊆ K and E/F is a finite Galois extension.}

to be the basis of open neighborhoods of 1 ∈ Gal(K/F ). The topology on Gal(K/F )
induced by N is called Krull topology.

Remark 3.85.
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(1) Given any two finite Galois extensions E/F,E ′/F such that E,E ′ ⊆ K, Gal(K/E ·
E ′) = Gal(K/E) ∩ Gal(K/E ′), where E · E ′/F is finite Galois as well. Hence N is
actually a basis of open neighborhoods of id.

(3) If K/F is finite Galois, then the Krull topology is discrete, since Gal(K/K) =
{id} ∈ N . Then {id} is open and any one point set is open.

(3) With the Krull topology, Gal(K/F ) is actually a topological group.

Proof. To prove this we need the following Lemma 3.86. Note that the proof of this
lemme is independent from the fact that Gal(K/F ) is a topological group and in the
proof we only need the definition of Krull topology. Actually Krull topology can also
be defined as the weakest topology of those φ’s.

To prove the composition function ◦ : Gal(K/F ) × Gal(K/F ) → Gal(K/F ) is
continuous, it’s enough to prove

µ : Gal(K/F )×Gal(K/F )→ Gal(E/F ), (τ, σ) 7→ τ ◦ σ|E

is continuous where E/F is finite Galois and Gal(E/F ) has discrete topology. If
we assume λ = τ ◦ σ|E is fixed, from the definition of Krull topology, we know
τ · Gal(K/E) and Gal(K/E) · σ is open around τ and σ respectively. But µ(τ ·
Gal(K/E),Gal(K/E) · σ) = τ ◦ σ|E = λ. Then µ is continuous.

Similarly, to prove ι : Gal(K/F )→ Gal(K/F ), ι(τ) = τ−1 is continuous, we only
need to prove ι′ : Gal(K/F )→ Gal(E/F ), ι′(τ) = τ−1|E is continuous. But consider
the open neighborhood τ ·Gal(K/E) of τ , we see ι′(τ ·Gal(K/E)) = τ−1|E. Then ι′
is continuous. Therefore Gal(K/F ) is a topological group with Krull topology.

(4) If we define

N ′ := {Gal(K/E)|F ⊆ E ⊆ K and E/F is a finite field extension.}

then this also defines the Krull topology.

Proof. Obviously, N ⪯ N ′. On the other hand for any finite field extension E/F
contained in K, since K/F is Galois⇒ E/F is finite separable, then the normal
closure E/F is finite Galois according to Remark 3.4 and Gal(K/E) ⊆ Gal(K/E).
Then N ′ ⪯ N , which implies N and N ′ induce the same topology. Or further we
consider H ′ ≤ H ≤ G, where H ′ is open and G is a topological group. Then from
the coset decomposition of H ′ in H, we conclude H is open as well. Then Gal(K/E)
is open in the topology induced by N .

(5) If E/F is a field extension contained in K which is not necessarily finite, then
Gal(K/E) is closed.
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Proof. In fact E is the composition of all finite field extensions contained in E. Hence

Gal(K/E) = ∩
L/F finite, L⊆E

Gal(K/L)

But Gal(K/L) is open from (4) above, hence closed as well according to the Lemma
3.83.

Lemma 3.86. For any finite Galois extension E/F contained in a Galois extension
K/F , the following map

φ : Gal(K/F )→ Gal(E/F ), τ 7→ τ |E

is continuous and surjective.

Proof. Since E/F is normal, from the Theorem 2.18, we see this map φ is well
defined. And according to the Proposition 2.14 and the fact that K/F is normal,
any may E → E ↪→ F̄ can be embedded into K → K and then φ is surjective.

Since E/F is finite Galois, Gal(E/F ) is a finite set with discrete topology. Then
it’s enough to prove ker φ is open in Gal(K/E). τ ∈ ker φ iff τ |E = id iff τ ∈
Gal(K/E) which is open by definition of Krull topology. In fact Krull topology is
the weakest topology induced by all such φ.

Then we could consider the map

ι =
∏

φ : Gal(K/F ) −→
∏

E/F is finite Galois

Gal(E/F )

which is an injective group homomorphism. If we assume ι(τ) = ι(σ), then given
u ∈ K, F (u)/F is the simple extension of u over F and E/F is the normal closure
of F (u)/F , hence finite Galois. Then τ |E = σ|E, τ(u) = σ(u) ⇒ τ = σ. Then ι is
a group isomorphism to its image. To study im ι further, we introduce the concept
of inverse limits.

If {Gi|i ∈ I} is a family of groups where I is a partially ordered set and there
are group homomorphisms

pij : Gj → Gi, ∀i, j ∈ I, i ≤ j

the inverse limit lim
←−
Gi is defined to be a group G with group homomorphisms

pi : G→ Gi such that pij ◦ pj = pi, ∀i, j ∈ I, i ≤ j, satisfying the universal property
that if (H, fi) is another solution such that pijfj = fi, i ≤ j, then there is a unique
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homomorphism θ : H → G such that pi ◦ θ = fi.

G H

Gj

Gi

pj

pi

fj

fi

∃! θ

pij

(10)

For simplicity such G is denoted by lim
←−
Gi as well and it’s unique up to isomorphism.

In the category of groups, the inverse limit has another explicit form

lim
←−
Gi := {(gi) ∈

∏
i∈I

Gi | pij(gj) = gi}

Dually there is a concept of inductive limits with all arrows in the diagram (10)
reversed, which is denoted by lim

−→
Gi.

Example 3.87. Assume I = N and maps Gi = Z/piZ → Z/pi−1Z = Gi−1, x 7→
x mod p. Then

Zp := lim
←−

Z/piZ = {(xi)i≥1|xi−1 ≡ xi mod pi−1}

= {(a0, a1, ...)|0 ≤ ai ≤ p− 1}

= {
∑
i≥0

aip
i|0 ≤ ai ≤ p− 1} (11)

The equations are derived from the fact that every element of Z has the unique form∑n
i=0 aip

i where 0 ≤ ai ≤ p− 1. Zp is called the p-adic integers.

If we consider inverse limits in the category of topological groups, such group
lim
←−
Gi will have the subspace topology of

∏
i∈I Gi, hence being a topological group

as well. Especially there is a special type of inverse limits of topological groups.

Definition 3.88. An inverse limit of finite (discrete) topological groups is called a
profinite group.

Lemma 3.89. A profinite group is compact, Hausdorff and totally disconnected.

Proof. According to Tcychonoff’s theorem which states if topological spaces Xi’s
are compat then

∏
iXi is compact as well,

∏
iGi is compact since Gi’s are finite
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discrete hence compact. lim
←−
Gi ⊆

∏
iGi. It’s enough to prove lim

←−
Gi is closed. Given

(g)i /∈ lim
←−
Gi, then there will exist pij such that pij(gj) ̸= gi. Define

U = {g1} × {gj} ×
∏
k ̸=i,j

Gk

which is open in
∏

iGi since Gi’s are discrete. Then (gi) ∈ U , but U ∩ lim
←−
Gi = ∅,

which means
∏

iGi − lim
←−
Gi is open.

Given any two elements (gi)i and (hi)i in
∏

iGi such that (gi)i ̸= (hi)i, then
there will exist some j, gj ̸= hj. Define open subsets Uj = {gj} ×

∏
i ̸=j

Gi and Vj =

(Gj − {gj})×
∏
i ̸=j

Gi. Then (gi)i ∈ Uj and (hi)i ∈ Vj but Uj ∩ Vj = ∅. Hence
∏

iGi is

Hausdorff, and then lim
←−
Gi is Hausdorff as well.

Recall that a space X is called totally disconnected if for every x ∈ X the
component containing x is {x} itself, which is also equivalent to say any subspace
containing more than one element of X is not connected. We assume A is a subspace
of

∏
iGi containing at least two different elements (gi)i, (hi)i. Uj and Vj are defined

as before. Note Uj ∪ Vj =
∏

iGi and Uj ∩ Vj = ∅. Then A is the disjoint union of
proper non-empty open subsets Uj ∩ A and Vj ∩ A of A, hence not connected,

Given a Galois extension K/F , all finite Galois extensions Ei/F contained in K
are indexed by the set I. i ≤ j iff Ei ⊆ Ej. Then I is a partially order set. Especially
I is directed which means ∀i, j ∈ I, ∃k ∈ I such that i, j ≤ k. Then there will exist
an inverse limit lim

←−
Gal(Ei/F ) ⊆

∏
i Gal(Ei/F ).

Theorem 3.90. Induced from the injection ι : Gal(K/F ) ↪→
∏

i Gal(Ei/F ), there is

an isomorphism ι′ : Gal(K/F )
∼→ lim
←−

Gal(Ei/F ) in the sense of topological groups.

Proof. We prove im ι is lim
←−

Gal(Ei/F ) first. im ι ⊆ lim
←−

Gal(Ei/F ) is obvious and we

prove the converse. Given an element (τi)i ∈ lim
←−

Gal(Ei/F ), τj|Ei = τi if Ei ⊆ Ej.

For any element u ∈ K, its simple extension F (u) is contained in some Ei such as its
normal closure. We define τ : K → K, u 7→ τi(u). If u ∈ Ei ∩ Ej, since Ek = Ei · Ej

is finite Galois as well from the Corollary 2.19 (2) and Proposition 2.27 (2), i, j ≤ k,
τi = τk|Ei and τj = τk|Ej. Then τi(u) = τj(u) = τk(u). τ is well defined and

τ |Ei = τi. This proves ι
′ : Gal(K/F )

∼→ lim
←−

Gal(Ei/F ) is a group isomorphism.

We prove ι′ is a homeomorphism as well. First ι is continuous and then ι′ is also
continuous. Next we prove ι′ is open and it’s enough to prove ι′(Gal(K/Ej)) is open.

ι′(Gal(K/Ej)) = ({1} ×
∏

Ei ̸=Ej

Gal(Ei/F )) ∩ lim
←−

Gal(Ei/F )
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The right part of the equation above is open in lim
←−

Gal(Ei/F ). Hence ι
′ is open.

Corollary 3.91. Gal(K/F ) with Krull topology is a profinite group hence compact,
Hausdorff and totally disconnected.

There is a Galois correspondence for infinite Galois extensions as well.

Proposition 3.92. Let K/F be a Galois extension. Then:

(1) KGal(K/F ) = F .

(2) If H ≤ Gal(K/F ), then Gal(K/KH) is the closure of H.

Proof. (1). If x ∈ KGal(K/F ) is contained in some finite Galois extension Ei/F ,
since Gal(K/F ) → Gal(Ei/F ), τ 7→ τ |Ei is surjective (Lemma 3.86), we see x ∈
E

Gal(Ei/F )
i = F .
(2). At first from the Remark 3.85 (5), Gal(K/KH) is closed containing H. Then

H ⊆ Gal(K/KH). Conversely, assume σ /∈ H. Then there is an open subgroup
Gal(K/E) where E/F is finite Galois such that σ ·Gal(K/E)∩H = ∅. Consider the
following exact sequence

1→ Gal(K/E)→ Gal(K/F )
φ→ Gal(E/F )→ 1

We have φ(σ · Gal(K/E)) = φ(σ) /∈ φ(H). φ(H) is a subgroup of Gal(E/F ).
Then the Galois correspondence for finite Galois extensions tells us φ(σ) /∈ φ(H) =
Gal(E/Eφ(H)). And there is some x ∈ Eφ(H) such that φ(σ)(x) = (σ|E)(x) ̸= x.
But Eφ(H) = KH ∩ E. Hence σ /∈ Gal(K/KH ∩ E) ⊇ Gal(K/KH).

Theorem 3.93 (Galois Correspondence). Given a Galois extension K/F , there is
a one-to-one correspondence

{closed subgroups H of Gal(K/F )} ←→ {subfields E of K containing F}
H 7−→ KH

Gal(K/E)←− [ E (12)

• H is open iff KH is finite over F .

• H is normal iff KH is Galois over F and

Gal(KH/F ) ∼= Gal(K/F )/Gal(K/KH)

Proof. Step 1: The one-to-one correspondence is easily derived from the Proposition
3.92.
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Step 2: Since Gal(K/F ) is compact, from the Lemma 3.83 the subgroup H ≤
Gal(K/F ) is open iff it’s closed of finite index. Now we only assume H is closed and
the corresponding subfield is KH .

Since K/F is separable, KH/F is separable a well. From the Theorem 2.36 we
know [KH : F ] = |HomF (K

H , F̄ )|. Suppose cosets of Gal(K/KH) = H in Gal(K/F )
are {H, τ1H, τ2H, ...}. We define a function:

ψ : {H, τ1H, τ2H, ...} → HomF (K
H , F̄ ), τiH 7→ τi|KH

Obviously we know ψ is well defined since H = Gal(K/KH). If ψ(τiH) = ψ(τjH),
then τi|KH = τj|KH and τi · τ−1j |KH = id, which means τi · τj ∈ H ⇒ τiH = τjH.

Hence ψ is injective. Conversely given any σ : KH → F̄ , which can be extended to be
σ′ : K → K since K/F is normal. Then we see ψ is surjective. Therefore the index
of H is just |HomF (K

H , F̄ )|. This proves H is cloed of finie index iff [KH : F ] <∞.
Step 3: The Step 3 of the proof of Theorem 3.9 is also valid here.

Remark 3.94. Here we prove the theorem that Gal(F ab/F ) = Gal(F̄s/F )
ab in Re-

mark 3.17.

Proof. Assume G = Gal(F̄s/F ). Since by definition Gab = G/[G,G] for the profinite

group G, from the Theorem 3.93 above we only need to prove Gal(F̄s/F
ab) = [G,G]

which is the closure of the subgroup [G,G] generated by all commutators in G.

From Lemma 3.82 (2) [G,G] ⊴ G ⇒ [G,G] ⊴ G. Suppose L = F̄
[G,G]
s . Then L/F

is Galois with Gal(L/F ) ∼= G/[G,G] abelian. Therefore L ⊆ F ab ⇒ Gal(F̄s/F
ab) ⊆

Gal(F̄s/L) = [G,G].
On the other hand, Gal(F̄s/F

ab)⊴G with G/Gal(F̄s/F
ab) ∼= Gal(F ab/F ) abelian,

and then [G,G] ⊆ Gal(F̄s/F
ab)⇒ [G,G] ⊆ Gal(F̄s/F

ab) since Gal(F̄s/F
ab) is closed.

Example 3.95.

(1) Fix the prime p and assume ξpn is the pn-th primitive root of unity 1. Let K :=
∪

n≥1
Q(ξpn). Since K/Q is the union of finite Galois extensions Q(ξpn)/Q, from the

Remark 3.18 and Theorem 3.90 K/Q is Galois such that

Gal(K/Q) ∼= lim
←−

(Z/pnZ)× = Z×p = {(a0, a1, ...)|a0 ̸= 0, 0 ≤ ai ≤ p− 1}

(2) Fp is the finite field. From Theorem 3.23 we know Gal(Fpn/Fp) = Z/nZ. For any
algebraic field extension K/F , K is the union of all finite extensions E/F . Hence
Fp = ∪Fpn . Then the absolute Galois group is

Gal(Fp/Fp) ∼= lim
←−

Z/nZ = Ẑ
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Note Fp is not the only infinite field extension between Fp and Fp. The following

tower defines a proper subfield of Fp.

Fp ⊆ Fpq ⊆ Fpq2 ⊆ ...

Exercise 3.96. Prove that every open subgroup of a profinite group contains an
open normal subgroup.
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4 Galois Cohomology and Kummer Theory

4.1 Norm and Trace

Definition 4.1. Given a finite extension K/F , for any α ∈ K, we could define
NK/F (α),TrK/F (α) ∈ F as follows:

NK/F (α) := det(mα) (13)

TrK/F (α) := trace(mα) (14)

where mα : K → K, x 7→ α · x is an F -linear map.

Fact 4.2.

(1) NK/F (α) and TrK/F (α) are independent from the choice of basis.

Proof. The matrix A and B are the matrices of the map mα corresponding with two
different bases. Then there is an inverse matrix T such that B = TAT−1. Then
NK/F (α) = det(B) = det(T )det(A)det(T )−1 = det(A).

Given any two n × n matrices U = (uij) and V = (vij). Then trace(UV ) =∑
i

∑
k uikvki =

∑
i

∑
k vikuki = trace(V U). Then TrK/F (α) = trace(B) = trace(TAT−1) =

trace(TT−1A) = trace(A).

(2) NK/F (−) is multiplicative, which means NK/F (α · β) = NK/F (α) ·NK/F (β). Espe-

cially if a ∈ F , NK/F (a) = a[K:F ] and NK/F (a · α) = a[K:F ]NK/F (α).

(3) TrK/F (−) is additive, which means TrK/F (α+ β) = TrK/F (α) +TrK/F (β). And if
a ∈ F , TrK/F (aα) = aTrK/F (α). Note TrK/F (a) = [K : F ]a.

(4) TrK/F : K → F is an F -linear map. Hence it’s surjective or 0.

Lemma 4.3. If there is a tower F ⊆ E ⊆ K where K/E is finite, then NK/F (α) =

NE/F (α)
[K:E] and TrK/F (α) = [K : E] · TrE/F (α) for all α ∈ E.

Proof. Assume {x1, ..., xn} is a basis of E/F and {y1, ..., ym} is a basis of K/E.
From Proposition 2.2 {xiyj} is a basis of K/F . If A ∈Mn×n(F ) is the corresponding
matrix of mα on E/F , which means

α ·


x1
x2
...
xn

 = A


x1
x2
...
xn


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Then

α ·



x1y1
x2y1
...

xny1
x1y2
...

xny2
...

xnym


=


A

A
. . .

A

 ·



x1y1
x2y1
...

xny1
x1y2
...

xny2
...

xnym


NK/F (α) = det(A)m = NE/F (α)

[K:E] and TrK/F (α) = m · TrE/F (α) = [K : E] ·
TrE/F (α) .

Remark 4.4 (Transitivity). The Lemma 4.3 above is a special case of following
formulas

NK/F = NE/F ◦ NK/E (15)

TrK/F = TrE/F ◦ TrK/E (16)

We will prove them later.

Lemma 4.5. Let K = F (α) be a simple extension of F and P ∈ F [X] is the minimal
polynomial of α over F . Assume P (X) = xn + an−1X

n−1 + ...+ a0. Then

NK/F (α) = (−1)na0
TrK/F (α) = −an−1

Proof. Choose {1, α, α2, ..., αn−1} as the basis. Then the matrix of mα is
0 1

0 1
. . . . . .

0 1
−a0 −a1 . . . −an−2 −an−1


Hence the trace is −an−1 and the determinant is (−1)n+1(−a0) = (−1)na0.

Proposition 4.6. Let K/F be a finite field extension of [K : F ] = qr where r = [K :
F ]s is the separable degree and q = [K : F ]i is the inseparable degree. See Definition
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2.30. From Theorem 2.36 we assume HomF (K, F̄ ) = {σ1, ..., σr}. Then we have the
following formulas

TrK/F (α) = q
∑
i

σi(α) (17)

NK/F (α) =
∏
i

σi(α)
q (18)

Furthermore if K/F is not separable for p = char(F ) > 0, then q is a nontrivial
power of p, and we have TrK/F (α) = 0.

Proof. We assume

trK/F (α) = q
∑
i

σi(α)

nK/F (α) =
∏
i

σi(α)
q

and show that trK/F = TrK/F , nK/F = NK/F . First suppose α ∈ F . Then σi(α) = α.
From Fact 4.2 (2) and (3)

TrK/F (α) = [K : F ] · a = q(ra) = q
∑
i

σi(α) = trK/F (α)

NK/F (α) = α[K:F ] = (αq)r =
∏
i

σi(α)
q = nK/F (α)

Now consider the special case of K = F (α). Let the minimal polynomial of α over
F be

Xn + an−1X
n−1 + ...+ a0

where n = qr. No matter char(F ) is 0 or not, from Remark 2.25, Remark 2.35,
Lemma 2.7 and Theorem 2.36, the polynomial has factorization

r∏
i=1

(X − σi(α))q

in F̄ [X]. Then from Lemma 4.5

TrK/F (α) = −an−1 = q
∑
i

σi(α) = trK/F (α)

NK/F (α) = (−1)na0 =
∏
i

σi(α)
q = nK/F (α)
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Now if α ∈ K is arbitrary, consider the chain of fields F ⊆ F (α) ⊆ K. Then from
Lemma 4.3

TrK/F (α) = [K : F (α)] · TrF (α)/F (α)

NK/F (α) = (NF (α)/F (α))
[K:F (α)]

Consider the following surjective map

HomF (K, F̄ )→ HomF (F (α), F̄ ), σi 7→ σi|F (α)

From the proof of Theorem 2.36 for any F -map τ : F (α) → F̄ there are exactly
[Ks : F (α)s] many extensions σi : K → F̄ such that σi|F (α) = τ . Hence

trK/F (α) = [K : Ks]
∑
i

σi(α)

= [K : Ks] · [Ks : F (α)s]
∑

τ∈HomF (F (α),F̄ )

τ(α)

= [K : Ks] · [Ks : F (α)s]trF (α)/F (α) ·
1

[F (α) : F (α)s]

=
[K : Ks] · [Ks : F (α)s]TrF (α)/F (α)

[F (α) : F (α)s]

= [K : F (α)]TrF (α)/F (α) = TrK/F (α) (19)

and

nK/F (α) =
∏
i

σi(α)
[K:Ks]

=
∏

τ∈HomF (F (α),F̄ )

τ(α)[K:Ks]·[Ks:F (α)s]

= nF (α)/F (α)
[K:Ks]·[Ks:F (α)s]

[F (α):F (α)s]

= NF (α)/F (α)
[K:F (α)] = NK/F (α) (20)

We now use the Proposition 4.6 to prove the transitive formulas in Remark 4.4.

Proof of Remark 4.4. Assume there is a chain of finite extensions F ⊆ E ⊆ K with

[E : F ] = q1[E : F ]s, [K : E] = q2[K : E]s

Suppose
HomF (E, F̄ ) = {σ1, ..., σr}, HomE(K, F̄ ) = {τ1, ..., τs}
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We extend σi to be σ′i : F̄ → F̄ . Then we have

HomF (K, F̄ ) = {σ′i ◦ τj|0 ≤ i ≤ r, 0 ≤ j ≤ s}

It follows from the Proposition 4.6 that

trK/F (α) = q1q2
∑
i,j

σ′iτj(α)

= q1
∑
i

σ′i(q2
∑
j

τj(α))

= q1
∑
i

σi(q2
∑
j

τj(α))

= trE/F (trK/E(α)) (21)

There are similar equalities for nK/F .

Corollary 4.7. Assume K/F is a finite extension. Then K/F is separable iff TrK/F :
K → F is surjective iff TrK/F is non-zero.

Proof. That TrK/F is surjective iff TrK/F is non-zero is clear.
First we consider the case of char(F ) = 0. Then K/F must be separable. Since

1 ̸= 0, from the Lemma 3.7 we see it’s impossible for all α ∈ K, TrK/F (α) =∑
i σi(α) = 0, where the symbols come from the Proposition 4.6.
Now we suppose char(F ) = p > 0. Then from the Lemma 3.7, TrK/F (α) =

q
∑

i σi(α) = 0 for all α ∈ K iff q = 0 in F which means p|q. Since q ≥ 1, it’s enough
to prove p|q ⇔ q > 1. The part of ⇒ is clear because q ≥ p > 1. We assume q > 1
which means K/F is not separable. Since [K : Ks] is purely inseparable according
to Proposition 2.34, then q = [K : Ks] = pm where m > 1 from the Fact 2.33. Hence
p|q.

Corollary 4.8. Let K/F be a finite Galois extension. Then TrK/F and NK/F are
compatible with τ ∈ Gal(K/F ) which means

TrK/F (α) = TrK/F (τ(α)), NK/Fα) = NK/F (τ(α))

Proof. It’s immediate from the Proposition 4.6.

Example 4.9. For Fqn/Fq, NFqn/Fq and TrFqn/Fq are surjective.

Proof. Any finite extension of finite fields is separable ⇒ TrFqn/Fq is surjective.
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F×qn is a cyclic group and we suppose x is the generator. Then x has order qn− 1.
Then from the formula of Proposition 4.6

NFqn/Fq(x) =
∏

σ∈Gal((Fqn/Fq)

σ(x)

= x · xq · xq2 · ... · xqn−1

= x
qn−1
q−1 = a ∈ F×q (22)

where Frob : u 7→ uq is the generator of Gal((Fqn/Fq) ∼= Z/nZ. a has order q − 1
hence generating the cyclic group F×q . Then since NFqn/Fq is multiplicative, NFqn/Fq

is surjective.

Remark 4.10. The Theorem of Hilbert 90 is that if K/F is a finite cyclic Galois
extension and σ ∈ Gal(K/F ) is the generator then the following conditions are
equivalent

(1) NK/F (α) = 1.

(2) There is some β ∈ K× such that α = σ(β)
β

.

In the Example 4.9, we assume α = xk for some integer k. NFqn/Fq(α) =

NFqn/Fq(x)
k = ak = 1. Then q−1|k Let k = (q−1)r ⇒ α = x(q−1)r = (xr)q

xr = Frob(xr)
xr .

Exercise 4.11. Let F = Q(ξ) where ξ = ξ9 is the primitive 9-th root of unity 1 in
C. Compute NF/Q(x and TrF/Q(x) for the following x.

• x = ξ2 + ξ6.

• x = ξ + ξ4 + ξ7.

4.2 Galois Cohomology

In this section we first sketch some motivations for group cohomology with partial
proofs omitted and all details can be found in [Rot09] Chapter 9. But this will not
affect reading since proofs of theorems concerning Galois cohomology are complete.

Assume R is a ring with unit 1 not necessarily being commutative. Given a short
exact sequence of left R-modules (If not specified, all modules are left modules.)

0 −→ A −→ B −→ C −→ 0

which is called an extension of A by C, another extension of A by C is isomorphic
to it if there is a commutative diagram

0 A B C 0

0 A E C 0
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According to the five lemma, B → E is forced to be an isomorphism. In homological
algebra, the set of isomorphism classes of extensions of A by C is computed as
Ext1R(C,A), where ExtR is the derived functor of HomR. If we consider extensions
of groups or give a short exact sequence of groups

1 −→ A
i−→ H

p−→ G −→ 1

there are similar theorems. For simplicity we always assume A is an abelian group.
We explain why we make this assumption. For any h ∈ H, h defines an inner
automorphism on H by x 7→ hxh−1 for x ∈ H. But A ⊴ H is a normal subgroup.
Hence the restriction of this inner automorphism on A is still an automorphism.
Then there is a map H → Inn(H)→ Aut(A). This deduces the following diagram

1 1

G Out(A)

H Inn(H) Aut(A)

A Inn(A)

1 1

∃!

p

i

(23)

If A is abelian, then Inn(A) = id,Out(A) = Aut(A) and any element g ∈ G defines
an automorphism of A such that a 7→ hah−1 where g = p(h).

Definition 4.12. For any group G, Z[G] is the free abelian group generated by the
underlying set of G which is called the group ring of G.

Z[G] := {
∑
g∈G

ng · g|ng ∈ Z, ng’s are almost all zero}

Z[G] is actually a ring whose multiplication is defined to be

(
∑
g∈G

ng · g)(
∑
h∈G

mh · h) =
∑
k∈G

lk · k, where lk =
∑
gh=k

ngmh

Fact 4.13.
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(1) The group ring Z[G] is characterized by the universal property such that given
any ring R

HomRings(Z[G], R) ∼= HomGroups(G,R
×)

The funtor Z[−] is left adjoint to the unit functor Rings→ Groups, R 7→ R×.

(2) An abelian group A is a Z[G]-module iff there is a ring morphism Z[G]→ End(A)
iff there is a group morphism G → End(A)× = Aut(A). Such module structure is
trivial if G→ Aut(A) is trivial. Therefore for any short exact sequence

0 −→ A
i−→ H

p−→ G −→ 1

A has a natural Z[G]-module structure. We say such sequence realizes (A, θ) where
θ : G→ Aut(A).

The set of isomorphism classes of short exact sequences realizing (A, θ) is denoted
by Eθ(G,A) which can be computed by Group cohomology. In the short exact se-
quence above, since p is surjective, there will exist a lifting ι : G → H such that
p ◦ ι = idG where ι may not be a group morphism. We can define a function

f : G×G→ H, (x, y) 7→ ι(x)ι(y)ι(xy)−1

Since p(ι(x)ι(y)ι(xy)−1) = xy(xy)−1, imf ⊆ A. Therefore we write f(x, y) as ι(x) +
ι(y)− ι(xy). Such function is called a cocycle and it satisfies the following cocycle
identity

xf(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0

with the Z[G]-module structure θ : G → Aut(A) such that x · a = ι(x) + a − ι(x).
Conversely given (A, θ) and a function f : G×G→ A satisfying cocycle identity we
could construct a short exact sequence realizing (A, θ) and f has the form f(x, y) =
ι(x)+ ι(y)− ι(xy). Moreover f and f ′ correspond with isomorphic sequences iff there
is a function h : G→ A such that

f(x, y)− f ′(x, y) = xh(y)− h(xy) + h(x)

A function g : G×G→ A is called a coboundary if there is some function h : G→ A
such that

g(x, y) = xh(y)− h(xy) + h(x)

Definition 4.14. For a Z[G]-module A the set of cocycles and coboundaries are
denoted by Z2(G,A) and B2(G,A) respectively.

Remark 4.15. Z2(G,A) is an abelian group with addition pointwise and B2(G,A)
is a subgroup of Z2(G,A).
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Proof. The cocyle condition of f+f ′ can be easily checked. We assume g is cobound-
ary. Then

xg(y, z)− g(xy, z) + g(x, yz)− g(x, y)
=x

(
yh(z)− h(yz) + h(y)

)
−
(
xyh(z)− h(xyz) + h(xy)

)
+
(
xh(yz)− h(xyz) + h(x)

)
−
(
xh(y)− h(xy) + h(x)

)
=0

Hence B2(G,A) ⊆ Z2(G,A).

The second cohomology group is defined to beH2(G,A) = Z2(G,A)/B2(G,A).
Then we will have Eθ(G,A) ∼= H2(G,A). This is the concrete interpretation of second
group cohomology. In general there is a complex

0 −→ C0(G,A)
d0−−→ C1(G,A) −−→ ... −→ Cn(G,A)

dn−−→ Cn+1(G,A) −→ ... (24)

where Cn(G,A) = Map(Gn, A) all maps from Gn to A in the sense of sets and
Gn = G× ...×G is the n’s products of G. Moreover

dn(f)(x1, ..., xn+1) =x1f(x2, ..., xn+1)

+
n∑

i=1

(−1)if(x1, ..., xixi+1, ..., xn+1)

+ (−1)n+1f(x1, ..., xn) (25)

Note G0 = {∗} is the one point set and then C0(G,A) = A. Viewing A as
Map({∗},A), we see d0(fa)(x) = xfa(∗)− fa(∗) = xa− a. Then d0(a) : x 7→ xa− a.

Fact 4.16. dn ◦ dn−1 = 0
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Proof.

dn(dn−1(f))(x1, ..., xn+1)

=x1d
n−1(f)(x2, ..., xn+1) +

n∑
i=1

(−1)idn−1(f)(x1, ..., xixi+1, ..., xn+1) + (−1)n+1dn−1(f)(x1, ..., xn)

=
(
x1x2f(x3, ..., xn+1) + x1

n∑
i=2

(−1)i−1f(x2, ..., xixi+1, ..., xn+1) + x1(−1)nf(x2, ..., xn)
)

+
(
− x1x2f(x3, ..., xn+1) + f(x1x2x3, ..., xn+1) +

n∑
i=3

(−1)if(x1x2, ..., xixi+1, ..., xn+1)

+ (−1)n+1f(x1x2, ..., xn)
)
+
( n∑

i=2

(−1)ix1f(x2, ..., xixi+1, ..., xn+1)

+
n∑

i=3

(−1)i
i−2∑
j=1

(−1)jf(..., xjxj+1, ..., xixi+1, ..., xn+1)

+
n∑

i=2

(−1)i
n∑

j=i+2

(−1)j−1f(..., xixi+1, ..., xjxj+1, ..., xn+1)

+
n∑

i=2

(−1)i(−1)i−1f(..., xi−1xixi+1, ...) +
n−1∑
i=2

(−1)i(−1)if(..., xixi+1xi+2, ...)

+
n−1∑
i=2

(−1)i(−1)nf(x1, ..., xixi+1, ..., xn) + (−1)n(−1)nf(x1, ..., xn−1)
)

+
(
(−1)n+1x1f(x2, .., xn) + (−1)n+1

n−1∑
i=1

(−1)if(x1, ..., xixi+1, ..., xn)

+ (−1)n+1(−1)nf(x1, ..., xn−1)
)

=0

The n-th cohomology group is defined to beHn(G,A) = kerdn/imdn−1. Especially
H0 = kerd0. For a ∈ A

d0(a) = 0⇔ d0(fa)(x) = 0,∀x ∈ G
⇔ xa = a, ∀x ∈ G
⇔ a ∈ AG (26)
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Then H0(G,A) = AG := {a ∈ A|x · a = a, ∀x ∈ G}.
For n = 1, f ∈ kerd1 iff d1(f)(x, y) = 0 for all x, y ∈ G.

xf(y)− f(xy) + f(x) = 0⇔ f(xy) = f(x) + xf(y)

Such map (1-cocyle) f : G→ A is called a crossed homomorphism. Especially when
(A, θ) is trivial, f(xy) = f(x) + f(y).

There is also another definition of group cohomology using the concept of derived
functors, which is equivalent to that we talk about above. We consider the left exact
functor HomZ[G](Z,−) where Z has the trivial Z[G]-module structure. Then any
Z[G]-morphism f : Z→ A is totally determined by a = f(1). But

f ∈ HomZ[G](Z, A)⇔ ∀x ∈ G, a = f(1) = f(x · 1) = x · f(1) = x · a

Hence
HomZ[G](Z, A) ∼= AG

This motivates us to define the group cohomology as

Hn(G,A) := ExtnZ[G](Z, A)

Dually there is a concept of group homology as well.

Hn(G,A) := TorZ[G]
n (Z, A)

In fact the two definitions of group cohomology are equivalent. Consider a special
free resolution of Z, which is called the bar resolution

...
∂n−−→ Bn

∂n−1−−−→ ...
∂0−−→ B0

ϵ−−→ Z −→ 0

where Bn is the free Z[G]-module with basis the underlying set Gn. The single
generator of B0 is denoted by [ ] and Bn with n ≥ 1 has basis [x1|x2|...|xn] where
xi ∈ G. Note x[x1|x2|...|xn] ̸= [xx1|xx2|...|xxn]. Then we can describe ∂n concretely.

∂n+1([x1|...|xn+1]) =x1[x2|...|xn+1]

+
n∑

i=1

(−1)i[x1|...|xixi+1|...|xn+1]

+ (−1)n+1[x1|...|xn]

Especially if n = 0, ∂0([x]) = x[ ] − [ ] and ϵ([ ]) = 1. Take the left exact functor
HomZ[G](−, A) to the bar resolution. We obtain the following complex

0 −→ HomZ[G](B0, A)
∂∗
0−−→ ...

∂∗
n−1−−−→ HomZ[G](Bn, A)

∂∗
n−−→ ...
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Since Bn is a free Z[G]-module with basis described above

HomZ[G](Bn, A) ∼= Map(Gn, A)

and such complex is equivalent to that we have defined before in equation (24).

Fact 4.17. Note that it’s tedious to prove the bar resolution is actually a free reso-
lution of Z. Of course the most tedious part is to check ∂n−1∂n = 0 which is the same
as the Fact 4.16. Hence in the following we just prove the complex (bar resolution)
has trivial homology groups.

Proof. We reduce the bar resolution to a complex of abelian groups and prove the
identity map of this complex is chain homotopic to the zero map. Note reducing
Z[G]-modules to abelian groups will not affect homology groups.

s−1 : Z→ B0, 1 7→ [ ]

sn : Bn → Bn+1, x · [x1|...|xn] 7→ [x|x1|...|xn]

Then we see ϵ◦s−1 = idZ. (∂0s0+s−1ϵ)(x · [ ]) = ∂0([x])+s−1(1) = x[ ]− [ ]+[ ] = x[ ].
Hence ∂0s0 + s−1ϵ = idB0 .

(∂nsn + sn−1∂n−1)(x · [x1|...|xn])

=∂n([x|x1|...|xn]) + sn−1

(
x ·

(
x1[x2|...|xn] +

n−1∑
i=1

(−1)i[x1|...|xixi+1|...|xn] + (−1)n[x1|...|xn−1]
))

=
(
x[x1|...|xn] +

n∑
i=1

(−1)i[x|...|xi−1xi|...|xn] + (−1)n+1[x|x1|...|xn−1]
)

+
(
[xx1|x2|...|xn] +

n−1∑
i=1

(−1)i[x|x1|...|xixi+1|...|xn] + (−1)n[x|x1|...|xn−1]
)

=x[x1|...|xn]

Therefore ∂nsn + sn−1∂n−1 = idBn .

Now let’s talk about Galois cohomology which is just the group cohomology of
Galois group. The most important theorem in this section is Hilbert 90 that we have
introduced before in Remark 4.10. We now state it from the viewpoint of Galois
cohomology.

Theorem 4.18 (Hilbert 90). If (K/F ) is a finite Galois extension, then

H1(Gal(K/F ), K×) = 0, (multiplicative form)

H1(Gal(K/F ), K) = 0, (additive form)
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Proof. Note there is a natural embedding G = Gal(K/F ) ↪→ Aut(K). Then K is a
Z[G]-module. So is K×. We prove the multiplicative form first.

Let f : G → K× be a 1-cocycle, which means f(στ) = f(σ) · (σf(τ)). For any
τ ∈ G, f(τ) ̸= 0. From the Lemma 3.7, we see

∑
τ∈G f(τ)τ is not all zero. Then

there is a element a ∈ K× such that

β =
∑
τ∈G

f(τ)τ(a) ̸= 0

therefore

σ(β) =
∑
τ∈G

σ
(
f(τ)τ(a)

)
=

∑
τ∈G

σ
(
f(τ)

)
στ(a)

=
∑
τ∈G

f(στ)f(σ)−1στ(a)

= βf(σ)−1 (27)

Then ∀σ ∈ G, f(σ) = βσ(β)−1. Let x = β−1. It follows that f(σ) = σ(x)x−1. Then
f is a 1-coboundary.

Next we consider the additive form. Assume f : G → K is a 1-cocycle, which
means f(στ) = f(σ) + σf(τ). If f is always zero, it’s obvious to see it’s a 1-
coboundary. We suppose there is some γ ∈ G such that f(γ) ̸= 0. Then the β defined
above is still non-zero. We choose another element b ∈ K× with TrK/F (b) ̸= 0. Such
element exists since K/F is Galois hence separable and from the Corollary 4.7 TrK/F

is non-zero.
Then consider the element c = a + b. Let µ =

∑
τ∈G f(τ)τ . If µ(a + b) = 0

then µ(b) = −µ(a) ̸= 0. Then we replace β by µ(b). If TrK/F (a + b) = 0 then
TrK/F (a) ̸= 0. If µ(a + b) ̸= 0 and TrK/F (a + b) ̸=, we replace β by µ(a + b). The
analysis above implies there is some a ∈ K×, µ(a) ̸= 0 and TrK/F (a) ̸= 0. We let
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β = µ(a). Hence

σ(β) =
∑
τ∈G

σ
(
f(τ)τ(a)

)
=

∑
τ∈G

σ
(
f(τ)

)
στ(a)

=
∑
τ∈G

(
f(στ)− f(σ)

)
στ(a)

= β − f(σ)
∑
τ∈G

στ(a)

= β − f(σ)TrK/F (a) (28)

Then f(σ) =
(
β−σ(β)

)
TrK/F (a)

−1. Suppose x = − β
TrK/F (a)

. f(σ) = σ(x)−x, which
means f is a 1-coboundary.

The Hilbert 90 in Remark 4.10 is classical and next we apply the Hilbert 90 above
to obtain classical one. But before that let’s consider the 1-cocycle of cyclic group of
order n. Assume G is a cyclic group of order n and f : G → A is a 1-cocyle. Then
f(xy) = f(x) + xf(y). If x = y = 1 then f(1) = f(1) + f(1) ⇒ f(1) = 0. If x = y,
then f(x2) = (1 + x)f(x). f(x3) = (1 + x+ x2)f(x). In general

f(xk) = (1 + x+ ...+ xk−1)f(x)

If G = ⟨x⟩, then f is totally determined by its value on x and

0 = f(1) = f(xn) = (1 + x+ ...+ xn−1)f(x)

Conversely assume a ∈ A such that (1+x+...+xn−1)·a = 0. Then f : G→ A, x 7→ a
defines a 1-cocycle.

Theorem 4.19 (Hilbert 90). Let K/F be a finite cyclic Galois extension of dimen-
sion n. G = Gal(K/F ) = ⟨σ⟩.
(1) If α ∈ K× with NK/F (α) = 1, then there is some β ∈ K× such that α = σ(β)

β
.

(2) If α ∈ K with TrK/F (α) = 0, then there is some β ∈ K such that α = σ(β)− β.
Proof. (1).We can prove this via the same process of (2) only replacing addition by
multiplication. But here we give a more intuitive proof.

We want to find β ∈ K× such that α = σ(β)
β
⇔ β = α−1σ(β). Assume L =

α−1σ : K → K. Then it’s equivalent to find an eigenvector with eigenvalue 1. The
construction is the same as in Lemma 3.52. L ◦ ... ◦ L = Ln = id, since

Lk(x) = α−1σ(α−1)...σk−1(α−1)σk(x)
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Ln(x) = NK/F (α
−1)x = x. For any x ∈ K, β = x + Lx + ... + Ln−1x⇒ Lβ = Lx +

L2x+ ...+Lnx = β. On the other hand 1+L+ ...+Ln−1 = 1+α−1σ+ ...+α−n+1σn−1.
From the Lemma 3.7 it’s not always zero. Hence there exists some x ∈ K× such that
β ̸= 0.

(2). 0 = TrK/F (α) =
∑

τ∈G(α) =
∑n−1

i=0 σ
i(α) = (1 + σ + ...+ σn−1)α. Then

f : G→ K, σk 7→ (1 + σ + ...+ σk−1)α

defines a 1-cocyle. Since H1(G,K) = 0, f is a 1-coboundary as well and there is an
element β ∈ K, f(σk) = σk(β)− β. Especially α = f(σ) = σ(β)− β.

Remark 4.20. There is an application of Hilbert 90. Let a, b ∈ Q satisfying a2+b2 =
1. Then ∃ c, d ∈ Q shch that

(a, b) = (
c2 − d2

c2 + d2
,
−2cd
c2 + d2

)

Proof. Consider Q(i)/Q where i2 = −1. This is a finite cyclic Galois extension and
the generator of Galois group is the conjugate map. Since NQ(i)/Q(a+bi) = a2+b2 = 1.
Then there is some c+ di ∈ Q(i)× such that

a+ bi =
c− di
c+ di

=
(c− di)2

c2 + d2

There are two generalizations of Hilbert 90. What’s the higher Galois cohomology?
What’s the Galois cohomology for infinite Galois extensions? We will focus on the
two themes in the following.

First we still assume K/F is a finite Galois extension and we want to compute
Hn(Gal(K/F ), K) and Hn(Gal(K/F ), K×) for higher n. But the two cases are
different.

Theorem 4.21. For a finite Galois extension K/F , Hn(Gal(K/F ), K) = 0, ∀n ≥ 1.

To prove this we need more techniques. For arbitrary group G we consider its
subgroup H ≤ G. Then Z[H] ↪→ Z[G]. Given a Z[G]-module A, the induced
module is defined to be Z[G]⊗Z[H] A and the coinduced module is defined to be

HomZ[H](Z[G], A). They are denoted by IndG
HA and CoindG

HA respectively.
For a ring R, a left module is denoted by RA and right module is denoted by AR.

Then we have the following obvious fact.

Fact 4.22. Let R and S be rings. Then
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(1) Given RAS and RB, HomR(A,B) is a left S-module where (a)(sf) = (as)f .

(2) Given RAS and BS, HomS(A,B) is a right R-module where (fr)(a) = f(ra).

(3) Given AR and SBR, HomR(A,B) is a left S-module where (sf)(a) = s(f(a)).

(4) Given SA and SBR, HomS(A,B) is a right R-module where (a)(fr) = ((a)f)r.

Given a ring morphism R → S. Then any S-module A has a natural R-module
structure. For RSS and RA, HomR(S,A) is a left S-module. Hence the coinduced
module HomZ[H](Z[G], A) is a left Z[G]-module as well.

Moreover there is an adjoint isomorphism for modules AR,RBS, CS

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

And it’s also interesting to see for a group ring Z[G] on it left modules are equivalent
to right modules, since for any left module A we could define a · g = g−1a, and then
it will have a right module structure.

Proposition 4.23 (Shapiro). Let G be a group and H ≤ G is a subgroup. Assume
A is a Z[G]-module. Then

(1) Hn(H,A) ∼= Hn(G,HomZ[H](Z[G], A))
(2) Hn(H,A) ∼= Hn(G,Z[G]⊗Z[H] A)

Proof. There are two proofs. We give a proof in the sense of homological algebra
here.

(1). Given a free resolution of trivial Z[G]-module Z (such as bar resolution)

−→ P1 −→ P0 −→ Z −→ 0

take the functor HomZ[G](−,HomZ[H](Z[G], A)) to it. Then

HomZ[G](Pn,HomZ[H](Z[G], A)) ∼= HomZ[H](Pn ⊗Z[G] Z[G], A)
∼= HomZ[H](Pn, A) (29)

Next we should prove the restriction of Pn on Z[H] also forms a free resolution of
the trivial Z[H]-module Z. It’s not difficult. From the coset decomposition of H in
G, we see Z[G] is a free Z[H]-module. Then it’s obvious that every free Z[G]-module
is a free Z[H]-module as well. Hence

ExtnZ[G](Z,HomZ[H](Z[G], A)) ∼= ExtnZ[H](Z, A)

(2). It’s similar to the proof of (1).

Pn ⊗Z[G]

(
Z[G]⊗Z[H] A

) ∼= Pn ⊗Z[H] A

Then
TorZ[G]

n (Z,Z[G]⊗Z[H] A) ∼= TorZ[H]
n (Z, A)
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Remark 4.24. We can also prove Hn(H,A) ∼= Hn(G,HomZ[H](Z[G], A)) directly
but it’s much more complicated. We construct a map

φ : Hn(G,HomZ[H](Z[G], A))→ Hn(H,A)

For any n-cycle f : Gn → HomZ[H](Z[G], A),

φ(f) : Hn −→ Gn f−−→ HomZ[H](Z[G], A)
π−−→ A

where π(u) = u(1). There are many things should be checked. φ(f) is an n-cycle.
If f is an n-coboundary then φ(f) is an n-coboundary as well. This proves φ is
well defined. Then you should prove φ is an isomorphism. To prove this you should
construct its inverse and prove it’s well defined. Note the inverse is difficult to
construct.

Exercise 4.25. Using the Remark 4.24 to prove the case of n = 1. Prove φ is well
defined and construct its inverse.

Theorem 4.26 (Normal Basis). Let K/F be a finite Galois extension. Then there
is a nomal basis over K/F i.e. an element α ∈ K× such that {τ(α)|τ ∈ Gal(K/F )
form a basis of K/F .

Proof. See [Lan02] Chapter VI Section 13 or https://en.wikipedia.iwiki.eu.

org/wiki/Normal_basis.

Corollary 4.27. Assume K/F is a finite Galois extension. Then there is an iso-
morphism of Z[G]-modules where G = Gal(K/F )

(K,+) ∼= HomZ(Z[G], F )

Note F is a trivial Z[G]-module and Z ∼= Z[{1}].

Proof. Assume {G = {τ1, ..., τn}. From the Normal Baiss Theorem there is an ele-
ment α ∈ K× such that {τi(α)|τi ∈ G} form a basis of K/F . Since Z[G] is the free
abelian group with basis the underlying set of G, HomZ(Z[G], F ) ∼= F n is an F -space
of dimension n. We define

uτi : Z[G]→ F, uτi(τi) = α, uτi(τj) = 0, if i ̸= j

Then uτi ’s form a basis of the F -vector space HomZ(Z[G], F ). The left Z[G]-module
structure on it is that (τ · uτi)(τj) = uτi(τj · τ). Define the F -linear isomorphism

τi(α) 7−→ uτ−1
i

To prove it’s an isomorphism of Z[G]-modules, it’s enough to prove τ · (τi(α)) 7→
τ · uτ−1

i
, which is equivalent to say u(ττi)−1 = τ · uτ−1

i
. But u(ττi)−1(τj) = 1 iff

74

https://en.wikipedia.iwiki.eu.org/wiki/Normal_basis
https://en.wikipedia.iwiki.eu.org/wiki/Normal_basis


τj = (ττi)
−1 iff τj = τ−1i τ−1 iff τjτ = τ−1i and

(
τ · uτ−1

i

)
(τj) = uτ−1

i
(τj · τ) = 1 iff

τjτ = τ−1i .
Next we prove τ respects the product of scalar a ∈ F and that’s why such map

above defines a Z[G]-module isomorphism.

τ · (aτi(α)) = τ(a)ττi(α) = aττi(α)

τ(auτi)(τj) = auτi(τjτ) = a(τ · uτi)(τj)

Proof of Theorem 4.21.

Hn(G,K) ∼= Hn(G,HomZ(Z[G], F )), (Corollary 4.27)
∼= Hn({1}, F ), (Proposition 4.23)
∼= ExtnZ(Z, F )
∼= 0, for n ≥ 1, since Z is free

Remark 4.28. In general H2(Gal(K/F ), K×) ̸= 0. For any field F the Brauer
group of it is defined to be H2(Gal(Fsep/F ), F

×
sep) where Fsep is the separable closure

of F . The Brauer group is denoted by Br(F ). There is another interpretation of
Brauer groups.

A central simple algebra (CSA) over F is a finite-dimensional associative F -
algebra A with center F having no non-trivial two-sided ideals. And any CSA over
F is isomorphic to some matrix ring Mn(D) where D is a division F -algebra with
center F . And we can define an equivalence relation on CSAs over F . Given any
two CSAs, A ∼= Mn(S) and B ∼= Mm(T ), we say A and B are similar or Brauer
equivalent if division rings S ∼= T . Then there is a bijection

Br(F )←→ the set of equivalence classes of CSAs over F

Now we suppose F = R and K = C. Then K is the separable closure of F . We want
to prove H2(Gal(C/R),C×) ̸= 0, which is equivalent to find a nontrivial CSA over
R. A trivial one is M2(R) whose center actaully consists of(

r 0
0 r

)
where r ∈ R. A nontrivial CSA over R is the Hamilton quaternions H, which is
defined to be

R⊕ Ri⊕ Rj ⊕ Rk
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where
i2 = j2 = k2 = −1, ij = k, jk = i, ki = j

H is itself a division ring which means H ∼= M1(H). A theorem of Frobenius states
that the only finite dimensional division algebras over R are R, C and H. But C is
not central. Hence in Br(R) there are only two elements. Then Br(R) ∼= Z/2Z

Finally we consider Galois cohomology for infinite extensions, which is also called
continuous cohomology. In the following we always assume G is a profinite group
and let A be a discrete abelian group.

Definition 4.29. A discrete Z[G]-module is a discrete abelian group A with the
action

G× A→ A, (g, a) 7→ g · g · a
continuous, which is equivalent to that for any fixed a ∈ A its stabilizer in G is open.

Example 4.30. Assume K/F is a Galois extension not necessarily finite. Then
Gal(K/F ) acts continuously on K and K×. For τ ∈ Gal(K/F ) and u ∈ K, τ(u) = u
iff τ ∈ Gal(K/F (u)). Since F (u)/F is a finite field extension, from the Remark 3.85
(4), Gal(K/F (u)) is open.

To define continuous cohomology, we define a new complex first.

0 −→ C0
cont(G,A)

d0−−→ C1
cont(G,A) −−→ ... −→ Cn

cont(G,A)
dn−−→ Cn+1

cont(G,A) −→ ...
(30)

where Cn
cont(G,A) = MapTop(G

n, A) consists of continuous maps from Gn to A and
dn is defined as before. Since A is discrete, continuous maps from Gn to A are
locally constant. The n-th continuous cohomology is defined to be Hn

cont(G,A) =
kerdn/imdn.

Proposition 4.31. Assume G = lim
←−
Gi is a profinite group where I is a directed set

and A = lim
−→
Ai where Ai’s are discrete Gi-modules. Then

Cn
cont(G,A)

∼= lim
−→
Cn(Gi, Ai)

Proof. There is an obvious G-module structure on A. For (gi)i ∈ G and a ∈ A,
there is some j ∈ I such that aj ∈ Aj which is the preimage of a. Then define
(gi)i · a = gjaj. More precisely it’s the image of gjaj in A. It’s easy to prove it’s well
defined since I is a directed set.

Since Gi’s and Ai’s are discrete Cn
cont(Gi, Ai) = Cn(Gi, Ai). For any i ≤ j,

fij : Gn
j → Gn

i , f
′
ji : Ai → Aj then gji : Cn(Gi, Ai) → Cn(Gj, Aj) is defined by

composition. And for pi : lim←−
Gn

i → Gn
i , p
′
i : Ai → lim

−→
Ai, there will also exist maps
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qi : C
n(Gi, Ai) → Cn

cont(lim←−
Gi, lim−→

Ai) defined by composition. Note inverse limits

commute with inverse limits. Therefore we don’t distinguish lim
←−

(Gn
i ) and (lim

←−
Gi)

n.

lim
−→
Cn(Gi, Ai) Cn

cont(lim←−
Gi, lim−→

Ai)

Cn(Gi, Ai)

Cn(Gj, Aj)

∃! θn

µi
qi

gji

µj
qj

(31)

The θn is induced by the universal property of inductive limits. Moreover θn’s
are actually a morphism between chains and the commutativity also comes from the
universal property of inductive limits. We now prove θn is an isomorphism.

Note given an element h ∈ lim
−→
Cn(Gi, Ai) there exists hi ∈ Cn(Gi, Ai) such that

h = µi(hi). θn(h) is defined to be qi(hi). These information can be obtained from
the diagram directly.

Given an element u ∈ lim
−→
Cn(Gi, Ai) such that µi(ui) = u, θn(u) = qi(ui) = 0.

For uipi : lim←−
Gn

i → Gn
i → Ai, since G

n
i has only finitely many elements, there will

exist j ≥ i such that ujpj = f ′jiuipi : lim←−
Gn

i → Aj is zero.

lim
←−
Gn

i

Gn
j Aj

Gn
k Ak

pj

0

pk

uj

f ′
kjfjk

uk

Assume
Ek := {x ∈ Gn

k |uk(x) ̸= 0}
for k ≥ j. Then if j ≤ k ≤ k′, fkk′(Ek′) ⊆ Ek. If some Ek is empty, then uk = 0 which
means u = µk(uk) = 0 and then θn is injective. We assume Ek are all non-empty. To
deduce a contradiction we need the following lemma

Lemma 4.32. The inverse limit of non-empty finite sets is non-empty where the
index set I is directed.
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If the lemma above is true, then the inverse system {Ek|k ≥ j} has non-empty
inverse limit. Say (xk)k ∈ lim

←−
Ek. It can be extended to be an element of lim

←−
Gn

i .

For any i ∈ I, there is some k ∈ I, i, j ≤ k. Hence the value in the position i is
determined be all k. But this will deduce an contradiction, because ukpk = f ′kj0 = 0.
Hence some Ek must be empty. We prove Lemma 4.32 after proving θn is surjective.

Given a continuous map w : lim
←−
Gn

i → lim
−→
Ai = A, since A is discrete, w−1(a)

is open in lim
←−
Gn

i . But lim
←−
Gn

i is profinite hence compact, w has only finitely many

values, say{a1, ..., am}. Note w−1(a) is closed as well. Hence w−1(a) is compact.
Since every open subset of

∏
iG

n
i has an open neighborhood

∏
i∈S Ui ×

∏
j ̸=S G

n
j

where Ui is open in Gn
i and S is a finite set. Every w−1(a) is an intersection of

finite unions of such open neighborhoods with lim
←−
Gn

i . Assume k is larger than any

element in S for all {a1, ..., am}. Then if we assume there are two elements u, v in
lim
←−
Gn

i satisfying pk(u) = pk(v) ⇒ pi(u) = pi(v) = fikpk(u) for any i ∈ S. Then u, v

belong to the same
∏

i∈S Ui×
∏

j ̸=S G
n
j hence to the same w−1(a). In Gn

k , pk(w
−1(al))

where 1 ≤ l ≤ m are disjoint with each other. Therefore there will be a factorization
of w

lim
←−
Gn

i A

Gn
k Ak′

Gn
k′

w

pk

pk′

w′

w′′

But there are only finitely many elements in Gm
k , w

′ factors as Gm
k → Ak′ → A.

Then w′′ : Gn
k′ → Gn

k → Ak′ belongs to C
n(Gk′ , Ak′) whose image under qk′ is just w.

Hence θn is surjective.

Proof of Lemma 4.32. Assume {fij : Xj → Xi|i ≤ j} is an inverse system of finite
sets. Then we only need to prove S = ∩j≤kRjk is non-empty where Rjk = {(xi)i ∈∏

iXi|fjk(xk) = xj}. Equip finite set Xi with discrete topology ⇒
∏

iXi is compact
by Tychonoff’s theorem. Since the set T = {(xj, xk) ∈ Xj × Xk|fjk(xk) = xj} is
closed and projection

∏
iXi → Xj ×Xk is continuous, Rjk is closed. Hence we only

need to prove the intersection of finitely many Rjk is non-empty. Choose k′ large
enough. xj = fjk′(xk′) and xk = fkk′(xk′). Other xi’s are arbitrary. Then we see
such finite intersection is non-empty.
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Theorem 4.33. Under the assumption of Proposition 4.31,

Hn
cont(G,A)

∼= lim
−→
Hn(Gi, Ai)

Proof. It’s a standard exercise in homological algebra that the n-th homology functor
Hn : Ch·(R)→ Ab commutes with inductive limits when the index set I is directed.
It’s not difficult just tedious and you should check many things. We leave as an
exercise.

Remark 4.34. If K/F is a Galois extension not necessarily finite and I is the
index set such that Ei/F is finite Galois contained in K, then from Theorem 3.90
Gal(K/F ) ∼= lim

←−
Gal(Ei/F ) and K = lim

−→
Ei. Then for n ≥ 1

Hn
cont(Gal(K/F ), K) ∼= lim

−→
Hn(Gal(Ei/F ), Ei) = 0

and
H1

cont(Gal(K/F ), K×) ∼= lim
−→
H1(Gal(Ei/F ), E

×
i ) = 0

4.3 Kummer Theory

In this section, the field F is special and it should contain a primitive n-th root of
unity 1 with n fixed. Then F will contain all n-th roots of unity 1. Moreover we
assume the polynomial Xn−1 has n’s different roots. We talk about Kummer theory
in such special field. Actually there is also a Kummer theory for fields not satisfying
this condition. But that’s much more complicated and we don’t consider it.

Note if F has characteristic zero, we have been familiar with it in the Section
3.2 since Q ⊆ F . But if char(F ) = p > 0, there will be some requirements on n. p
must not divide n, p ∤ n. And since all roots of Xn − 1 form a group, from Lemma
2.38 we see such group will be cyclic and the primitive n-th root exist. The group is
denoted by

µn := {n-th roots of unity 1} ⊆ F̄

and we require µn ⊆ F .

Lemma 4.35. Let a ∈ F× and m is the order of a in the multiplicative quotient
group F×/(F×)n. Then every irreducible factor of Xn − a ∈ F [X] has the form

Xm − b

for some b ∈ F .

79



Proof. Assume α is a root of P (X) = Xn − a in F̄ . It suffices to prove the minimal
polynomial Q of α over F has the form Xm − b.

Step 1. We first prove Q|Xm−b, which is equivalent to say αm ∈ F . By definition
of m, am ∈ (F×)n and there exist some b ∈ F× such that am = bn. Since αn = a,
αnm = bn ⇒ (αm/b)n = 1. Then αm/b ∈ µn ⊆ F . Hence αm ∈ F×.

Step 2. Now we only need to prove deg(Q) = m.

P = Xn − a =
n−1∏
i=0

(X − α · ξin)⇒ Q =
∏
i∈S

(X − αξin)

where S ⊆ {0, ..., n−1} and |S| = deg(Q). Expand Q⇒ αdeg(Q)ξkn ∈ F× ⇒ αdeg(Q) ∈
F× where k =

∑
i∈S i. Then

adeg(Q) = (αn)deg(Q) = (αdeg(Q))n ∈ (F×)n

hence m|deg(Q)⇒ m = deg(Q).

Corollary 4.36. Under the assumption of Lemma 4.35, [F (α) : F ] = m where α is
a root of Xn − a.
Proposition 4.37. Under the assumption of Lemma 4.35, if α is a root of Xn − a
then F (α)/F is a cyclic Galois extension of degree m.

Proof. Having degree m has been proved above. Since roots of Xn − a are {αξin|i =
0, 1..., n − 1} hence all different and the minimal polynomial of α divides Xn − a
then having different roots, F (α)/F is separable by Lemma 2.29. And since µn ⊆ F ,
F (α) is the splitting field of Xn−a. Then F (α)/F is normal by Theorem 2.18. Next
we define a map

φ : Gal(F (α)/F )→ µn, σ 7→
σ(α)

α(σ(α)
α

)n
= σ(αn)

αn = σ(a)
a

= 1⇒ σ(α)
α
∈ µn. We prove it’s a group morphism.

φ(σ)φ(τ) =
σ(α)

α
· τ(α)
α

=
1

α
σ(α · τ(α)

α
), since

τ(α)

α
⊆ µn ⊆ F

=
(στ)(α)

α
= φ(στ)

Next we prove it’s injective. If α(σ) = 1, σ(α) = α. Then σ fixes F (α) hence being
the identity map. Then Gal(F (α)/F ) is isomorphic to a subgroup of a cyclic group
thus cyclic as well.
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Kummer theory is the converse of the proposition above.

Theorem 4.38 (Kummer). Let K/F be a Galois extension whose Galois group is
Z/mZ = ⟨σ⟩ where m|n. Then K = F (α) with αm ∈ F×.

Proof. Assume ξm is a primitive m-th root of unity 1 obtained from µn. Then

NK/F (ξm) = ξ
[K:F ]
m = ξmm = 1. Hence according to Theorem 4.19 (multiplicative form

of Hilbert 90), there exists some α ̸= 0 satisfying ξm = σ(α)
α
⇒ σ(α) = α · ξm. Since

σ(αm) = (αξm)
m = αm, αm ∈ F×. And we can seem is the minimal integer satisfying

am ∈ F×. Next we consider extensions F ⊆ F (α) ⊆ K and prove Gal(K/F (α))
is trivial. Otherwise there is τ ∈ Gal(K/F (α)) ⊆ Gal(K/F ) = ⟨σ⟩ such that
τ = σi, 1 ≤ i ≤ m− 1. But τ(α) = σi(α) = αξim ̸= α. A contradiction!

Note if we let a = αn where α is defined above, then the order of a in F×/(F×)n

is the minimal integer satisfying αord(a) ∈ F× according to Lemma 4.35. Hence
ord(a) = m. In the following for simplicity given a group G, a G-extension of F
means a Galois extension K/F whose Galois group is isomorphic to G. Then we
have the corollary

Corollary 4.39. There is a bijections between

{Z/mZ-extensions of F where m|n} ←→ {⟨a⟩ ⊆ F×/(F×)n|ord(a) = m} (32)

Proof. We first prove it’s well defined. Consider the morphism of part “←” and α
is a root of Xn − a. Since µ ⊆ F , the splitting field F (α) is independent from the
choice of the root α. And if ⟨a⟩ = ⟨b⟩ then there is an integer k with (k,m) = 1 such
that a = bk. Assume β is a root of Xn − b. Then α = βk is a root of Xn − a. Then
F (α) ⊆ F (α). The converse is also true since as we have proved F (α) and F (β) are
splitting fields independent from the choice of α and β respectively.

From Theorem 4.38, we see such morphism of part “←” is suejective and we
only need to prove it’s injective. If there are two elements a, b haveing the same
order m in F×/(F×)n and assume αn = a, βn = b satisfying K = F (α) = F (β),
there is a morphism φ : Gal(K/F ) = ⟨σ⟩ → µn in Proposition 4.37. Then we could

define φα(σ) = σ(α)
α

and φβ(σ) = σ(β)
β

. Note imφ = µm ⇒ σ(α)
α

and σ(β)
β

are both

m-th primitive roots of unity 1. Hence there exists some integer k with (k,m) = 1

such that σ(α)
α

=
(σ(β)

β

)k ⇒ σ(αβ−k) = αβ−k, which means αβ−k ∈ F×. And

then (αβ−k)n = ab−k ∈ (F×)n. Hence in F×/(F×)n, a = bk with (k,m) = 1 and
⟨a⟩ = ⟨b⟩.

Note the cyclic group Z/mZ has the beautiful property with exponent dividing n
which means the order of any element in Z/mZ divides n. And this can be generalized
as
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Definition 4.40. A Kummer extension of F is an abelian extension K/F such
that the order of any element τ ∈ Gal(K/F ) divides n.

K/F may not be cyclic nor finite. For example groups Z/nZ × Z/mZ and∏∞
i=1 Z/nZ will have the property stated above but are not cyclic and finite re-

spectively. There is a characterization of finite Kummer extensions.

Theorem 4.41. K/F is a finite Kummer extension iff K has the form

K = F ( n
√
a1, ..., n

√
ar)

for some elements ai ∈ F×.

Proof. “⇐”: Every F ( n
√
ai)/F is finite Galois by Proposition 4.37 whose Galois group

is cyclic of order dividing n. Consider the following injection

Gal(K/F ) ↪→
r∏

i=1

Gal(F ( n
√
ai)/F )

We see Gal(K/F ) is abelian and every element in it has order dividing n.
“⇒”: Since Gal(K/F ) is finite abelian, the fundamental theorem for finitely

generated modules over a PID tells us

Gal(K/F ) ∼= G1 × ...×Gr

where Gi’s are cyclic of order dividing n. Assume Kj = KHj and Hj =
∏
i ̸=j

Gi × {1}
at j

.

Since Hj ⊴G is normal, Gal(Kj/F ) = Gal(K/F )/Hj = Gj. Then from the Theorem
4.38, Kj = F ( n

√
aj) for some aj ∈ F× and K = K1 · ... ·Kr = F ( n

√
a1, ..., n

√
ar) follows

from the following Lemma 4.42.

Lemma 4.42. Let K/F be finite Galois extension with Galois grooup

G = Gal(K/F ) = G1 × ...×Gr

Then K = K1 · ... ·Kr where Kj = KHj and Hj =
∏
i ̸=j

Gi × {1}
at j

.

Proof. We prove by induction on r. If r = 1 then it’s obvious. If r = 2, we need to
prove [K1 ·K2 : F ] = [K : F ]. Given an element x ∈ K1 ∩K2, it’s fixed by H1 and
H2. Then x is fixed by H1 ·H2 = G ⇒ K1 ∩K2 = F . And since Hi ⊴G is normal,
Ki/F is finite Galois. According to the Proposition 3.14

Gal(K1 ·K2/F ) ∼= Gal(K1/F )×Gal(K2/F )
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then [K1 ·K2 : F ] = [K1 : F ] · [K2 : F ] = |H1| · |H2| = |G| = [K : F ].
We assume the lemma is true for ≤ r and consider the condition on r + 1.

Suppose Hj =
∏
i ̸=j

Gi × {1}
at j

and H ′r =
∏

i ̸=r, r+1

Gi × {1}
at r

× {1}
at r + 1

. Then by assumption

K = K1 · ... · Kr−1 · K ′r where Kj = KHj and K ′r = KH′
r . Since H ′r ≤ Hr, Hr+1,

Kr, Kr+1 ⊆ K ′r. Moreover Gal(K ′r/F )
∼= Gal(K/F )/Gal(K/K ′r) = Gr × Gr+1. We

see from the condition r = 2 we have proved, K ′r = Kr ·Kr+1. ThenK = K1 ·...·Kr+1.
This proves the lemma.

Topics talked above are classical Kummer theory and actually there is a viewpoint
of Galois cohomology. We assume Ks = Fsep is the separable closure of F . Ks/F
is Galois since for any element in Ks, its minimal polynomial over F is separable
and then all roots of this polynomial will lie in Ks. Hence Ks/F is normal as well.
And we can see Ks/F is the maximal Galois extension contained in F̄ . Therefore
Ks = lim

−→
Ei where Ei/F is finite Galois. For any finite Galois extension Ei/F , we

have the following short exact sequence of Gi = Gal(Ei/F )-modules

0 −→ µn −→E×i −→ (E×i )
n −→ 0 (33)

x 7−→ xn

Note for any a ∈ K×s , the polynomial Xn − a is separable hence all roots lying in
K×s . Then we see (K×s )

n = K×s . Hence Ks = lim
−→

(Ei)
n as well. Consider the left

exact functor HomZ[Gi](Z,−) ∼= (−)Gi and there will exist a long exact sequence.

0 −→ µGi
n −→ (E×i )

Gi −→
(
(E×i )

n
)Gi ∂−−→ H1(Gi, µn) −→ H1(Gi, E

×
i ) = 0 (34)

where H1(Gi, E
×
i ) = 0 follows from the Theorem 4.18 (multiplicative form of Hilbert

90) and Gi acts trivially on µn. Then µGi
n = µn, (E

×
i )

Gi = F× and
(
(E×i )

n
)Gi =

(E×i )
n∩F×. Moreover for group cohomology ifG acts trivially on A, then B1(G,A) =

0. Then H1(G,A) = Z1(G,A). Assume f : G→ A is a 1-cocycle. We have xf(y)−
f(xy) + f(x) = 0 ⇒ f(xy) = f(x) + f(y) which is actually a group homorphism.
Hence H1(G,A) = HomGroups(G,A). Here H1(Gi, µi) = HomGroups(Gi, µn). The
long exact sequence implies(

(E×i )
n ∩ F×

)
/(F×)n ∼= HomGroups(Gi, µn)

Also notice that lim
−→

(
(Ei)

n∩F
)
= Ks∩F = F . Since inductive limits of directed

index set is exact, take inductive limits to the long exact sequence above and finally
we obtain

0 −→ µn −→ F× −→ F×
∂−−→ H1

cont(G, µn) −→ 0 (35)
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where G = Gal(Ks/F ) and H
1
cont(G, µn) = HomToGroups(G, µn) consists of all contin-

uous group morphisms where µn is equipped with discrete topology and G is with
Krull topology. Then

F×/(F×)n ∼= HomToGroups(G, µn)

Next we study the connected morphism ∂ further and we focus on finite Galois
case first. Looking at the following commutative diagram from which the long exact
sequence of finite Galois case come.

0 0 0

0 Map(G0
i , µn) Map(G0

i , E
×
i ) Map(G0

i , (E
×
i )

n) 0

0 Map(G1
i , µn) Map(G1

i , E
×
i ) Map(G1

i , (E
×
i )

n) 0

...
...

...

The connected morphism ∂ is just the dotted arrows. Gievn an element a ∈ (E×i )
n,

choose a root α of Xn − a in E×i first. d1(α) : σ 7→ (σ · α)α−1 = σ(α)
α

which also
belongs to Map(G1

i , µn). This is clear in snake lemma. Hence in general case

F×/(F×)n
∼−−→ HomToGroups(G, µn), a 7−→ (Xa : σ 7→

σ(α)

α
) (36)

where α is a root ofXn−a. This isomorphism is similar to that in Corollary 4.39. And
we can check Xa is continuous since σ ∈ ker(Xa) iff σ(α) = α iff σ ∈ Gal(Ks/F (α))
where F (α)/F is finite. Hence Gal(Ks/F (α)) is open from Remark 3.85 (4) by
definition of Krull topology. But note it’s in fact not necessary to check Xa is whether
well defined and continuous or not because all our results above come from the Section
4.2 and homological algebra with nothing new. Then Xa satisfies all these properties
automatically.

From the checking process we see kerXa = Gal(Ks/F ( n
√
a))⊴G is normal. Then

F ( n
√
a)/F is finite Galois. Moreover given distinct Xa1 , ...,Xar , we will have

kerXa1 ∩ ... ∩ kerXar = Gal(Ks/F ( n
√
a1, ..., n

√
ar))

Now we still start from the long exact sequence of finite Galois case. Assume
K/F is a Kummer extension. Passing to inductive limits, we have(

(K×)n ∩ F×
)
/(F×)n ∼= HomToGroups(G, µn)
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where G = Gal(K/F ). The Kummer group of K/F is defined to be

Kum(K/F ) :=
(
(K×)n ∩ F×

)
/(F×)n

Especially if K/F is finite then Kum(K/F ) ∼= HomGroups(G, µn) and there will be a
perfect bimultiplicative paring :

⟨ , ⟩ : Gal(K/F )×Kum(K/F )→ µn, ⟨σ, a⟩ = Xa(σ) =
σ(α)

α

by choosing a α = n
√
a in K×. It satisfies following properties:

• (Bimultiplicative)

⟨σ1σ2, a⟩ = ⟨σ1, a⟩ · ⟨σ2, a⟩
⟨σ, a1a2⟩ = ⟨σ, a1⟩ · ⟨σ, a2⟩

• (Perfect) If σ ∈ Gal(K/F ) satisfies for all a ∈ Kum(K/F ), ⟨σ, a⟩ = 1 then
σ = id. If a ∈ Kum(K/F ) satisfies for all σ ∈ Gal(K/F ), ⟨σ, a⟩ = 1 then a = 1
which is equivalent to a ∈ (F×)n.

Only the first part of perfect properties need some words. Since K/F is finite Kum-
mer, according to the Theorem 4.41 K = F ( n

√
a1, ..., n

√
ar) where ai ∈ (K×)n ∩ F×.

And then kerXa1 ∩ ... ∩ kerXar = Gal(K/F ( n
√
a1, ..., n

√
ar)) = 1. Hence we see if

⟨σ, a⟩ = 1 for all a ∈ Kum(K/F ), then σ ∈ ∩akerXa = 1. This perfect bimultiplica-
tive paring is called Kummer duality.

Moreover the inductive limits of all finite Kummer extensions form a maximal
Kummer extension and it contains all roots of Xn − a where a ∈ F . If the maximal
Kummer extension is denoted by K/F , then F ⊆ Kn and Kum(K/F ) = F×/(F×)n.

⟨ , ⟩ : Gal(K/F )× F×/(F×)n → µn

The paring is still perfect bimultiplicative, since K = F (∪i n
√
ai) where ai ∈ F× and

then ∩akerXa = Gal(K/F (∪i n
√
ai)) = 1.

Until now we only consider about multiplicative forms of Kummer theory. In
the following we talk about Artin–Schreier theory which is an analogy of Kummer
theory in the case of char = p > 0. In Kummer theory we consider the polynomial
Xn − a, but here we consider the Artin Schreier polynomial Xp −X − a ∈ F [X].

Theorem 4.43. Let F be a field of char = p > 0. Then

(1) Given a ∈ F , polynomials Xp−X−a are either irreducible or completely reducible.

(2) If K/F is a cyclic extension of degree p, then K = F (α) where α is a root of
Xp −X − a for some a ∈ F .
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Proof. (1). Assume α ∈ F̄ is a root of f(X) = Xn − X − a. Then α + j where
0 ≤ j ≤ p−1 is also a root of it since (α+j)p−(α+j)−a = (αp+jp)−(α+j)−a = 0.
Note Fp consists of all roots of Xp −X. Hence if f(X) has a root in F then all its
roots in F .

Now we suppose f(X) has no roots in F . If f(X) is not irreducible then f = gh
where g, h ∈ F [X] and 0 ≤ deg(g), deg(h) ≤ p. Since f(X) =

∏p−1
j=0(X − α − j),

g(X) =
∏

j∈S(X − α− j) where S ⊆ {0, 1, ..., p− 1}. Let d = deg(g) = |S|. Expand
g(X)⇒ g(X) = Xd+ad−1X

d−1+... and ad−1 = −
∑

j∈S(α+j) = −dα−
∑

j∈S j ∈ F .
Then dα ∈ F ⇒ α ∈ F since 0 < d < p. A contradiction.

We see for any irreducible polynomial Xn − X − a with a root α, its splitting
field is F (α) of degree p with Galois group Z/pZ.

(2). Let K/F be a cyclic extension of degree p and G = Gal(K/F ) = ⟨σ⟩. Since
TrK/F (1) = [K : F ] · 1 = 0, from the Theorem 4.19 (additive form of Hilbert 90),
there is some α ∈ K satisfying 1 = σ(α)− α ⇒ σ(α) = 1 + α. Then αj(α) = j + α
where 0 ≤ j ≤ p− 1 are p’s distinct conjugates of α. Then K = F (α). Moreover to
prove the minimal polynomial of α is Xp −X − a, it’s enough to prove αp − α ∈ F .
But σ(αp − α) = (α + 1)p − (α + 1) = αp − α Hence αp − α ∈ F .

This theorem can be generalized to pr-groups.

Theorem 4.44. If K/F is a Galois extension whose Galois group

Gal(K/F ) ∼= Z/pZ× ...× Z/pZ = (Z/pZ)r

Then there are a1, ..., ar ∈ F× such that K = F (α1, ..., αr) where αi is a root of
Xp −X − aj.
Proof. Use Lemma 4.42 and Theorem 4.43.

We can also use Galois cohomology to reformulate the Artin–Schreier theory.
Assume again Ks is the separable closure of F and G = Gal(Ks/F ). There is a short
exact sequence

0 −→ Fp −→Ks
φ−−→ Ks −→ 0 (37)

x 7−→ xp − x

Note φ is additive φ(x + y) = (x + y)p − (x + y) = xp − x + yp − y = φ(x) + φ(y).
And φ is surjective. Given any element a ∈ Ks consider the polynomial Xp−X − a
which is separable since its derivative is −1 ̸= 0. Then its roots are in Ks. There
will exist some x ∈ Ks satisfying xp − x = a. And obviously kerφ = Fp. Take the
continuous cohomology to this short exact sequence we obtained the following long
exact sequence

0 −→ FG
p −→ KG

s −→ KG
s

∂−−→ H1
cont(G,Fp) −→ H1

cont(G,Ks)
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where KG
s = F and H1

cont(G,Ks) = 0 follows from Remark 4.34. And since G acts
trivially on Fp, then H

1
cont(G,Fp) = HomToGroups(G,Fp). Then

0 −→ Fp −→ F −→ F
∂−−→ H1

cont(G,Fp) −→ 0 (38)

Explicitly

F/{xp − x|x ∈ F} ∼= H1
cont(G,Fp) = HomToGroups(G,Fp)

a 7−→ (θa : σ 7→ σ(α)− α) (39)

where α is a root of the polynomial Xp − X − a. Though it’s not necessary and
there is no distinguished difference between this case and the multiplicative case
considered before, you can check it’s well defined and θa is actually a group morphism
by yourselves.

σ ∈ kerθa iff σ(α) = α iff σ ∈ Gal(Ks/F (α)). Then kerθa = Gal(Ks/F (α)) ⊴ G
is normal. This implies Gal(Kkerθa

s /F ) ∼= G/kerθa ∼= Z/pZ since non trivial θa is
suejective and Kkerθa

s = F (α).

Exercise 4.45. Let K/F be a Z/pnZ-extension where p is a prime and n ≥ 1. Let
F ⊆ E ⊆ K be a subfield such that [K : E] = p. Prove the following statement: if
K = E(α) then we also have K = F (α).

Exercise 4.46. Let F be a field, n ∈ N which is coprime to char(F ), but F is not
assumed to contain µn. Let K = F (α) where α ∈ F̄ is a root of Xn − a for some
a ∈ F×. Prove that [K : F ] divides n. (Hint: reduce to the case µn ⊆ F .)
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