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1 Introduction

The theme of this mini-course is Galois theory, which starts with field extension. The
prerequisites we assume are some basic group theory, ring theory and field theory,
which are contained in the undergraduate course Abstract Algebra.



Roughly speaking, Galois theory is to study field theory using the technique of
group theory. If we assume the field extension K/F is finite Galois, which means
for an element u € K, all roots of its minimal polynomial are different and in K, we
define the Galois group

Gal(K/F) = Autp(K) = {f : K = K| f|p = idp}

Then the Galois correspondence (Theorem states there is a one-to-one corre-
spondence between subfields of K containing F' and subgroups of Gal(K/F). Clas-
sically Galois theory comes from solvability of algebraic equations. For a polynomial
f(X) € Q[X] it’s solvable by radicals iff the Galois group of its splitting field is solv-
able (Theorem [3.51)). This is the theme of Section[3.4] It’s famous that polynomials
of degree < 4 are always solvable by radicals but those of degree > 5 are not solvable
in general. In Section [3.5) we will construct those polynomials not solvable. In this
course we also talk about applications of Galois theory to compass and straightedge
construction. Actually compass and straightedge could only define a field extension
of degree a power of 2. See Theorem and Remark [3.36, This characterization
will help us solve four difficult problems in ancient Greece.

Apart from finite Galois theory, we also introduce infinite Galois theory and
there is a Galois correspondence as well (see Theorem [3.93). To deal with this we
equip Galois groups with a special topology called Krull topology and consider closed
subgroups. Such theory is compatible with finite Galois theory. Actually for a finite
Galois extension, its Galois group is a discrete finite group with Krull topology.
Hence all its subgroups are open as well as closed.

Finally we talk about Galois cohomology and Kummer theory. Galois cohomology
is a special case of Group cohomology and the most important theorem here is Hilbert
90 which also has a classical form focusing on finite cyclic Galois extension using the
technique of norm and trace. Of course we consider the Galois cohomology for infinite
Galois extensions as well which is called continuous cohomology. And this infinite
case can be reduced to the finite case via inverse limits and inductive limits (see
Proposition and Theorem .

In the end we study Kummer theory which is the starting point of class field
theory. Classically multiplicative Kummer theory deduce a correspondence between
cyclic extensions and cyclic groups of F*/(F*)" where F' is assumed to contain
n-th primitive root of unity 1. As a generalization there is a concept of Kummer
extensions. Interestingly there is also a modern viewpoint of multiplicative Kummer
theory using Galois cohomology. Moreover Artin—Schreier theory is an analogy of
Kummer theory in the case of char = p > 0, which is of the additive form. And there
is a viewpoint in Galois cohomology of it as well. All these are themes of Section
4.3l



2 Field Extension

Let F be a field. Its characteristic is the minimal positive integer n such that
n-1=0in F. If such integer doesn’t exist, we say F' has characteristic zero. It’s
obvious to see if char(F) # 0, then char(F') = p where p is a prime number. If
char(F) = p, then (a + b)? = a” + b” for a,b € F, since p|C}, where 1 < i < p.

If K is another field and f : FF — K is a ring morphism, then f is injective since
in a field the only proper ideal is (0).

Definition 2.1. The injection F — K is called a field extension, and it can be
written as F C K or K/F as well. Since F is a field, we can view K as a vector
space over F', whose dimension is denoted by dimpK = [K : F|. A field extension
F C K is called finite, resp. infinite if [K : F| < oo, resp. [K : F| = oc.

Proposition 2.2. Let ' C F C K be field extensions. Then
[K:F]=[K:E]-[E:F].

Proof. If {z;]i € I} is a basis of E over F, and {y;|j € J} is a basis of K over E.
Then every element v € K can be written as u = ;" | ayy;, where a; € E. But
ap = Z;Z/l bz, bg € F. Then u = Zk,l bux;,yj,- Therefore {x;y;} generate K over
F.

On the other hand, if >, , cux;, v, = 0, then >, > (cuxi, )y, = 0= >, cuxi, =
0 = ¢ = 0, which means iiyj’s are independent and form a basis of K over F.
Hence [K : F] =[K : E]-[E : F]. O

For a field extension F' C K, if S is a subset of K, then the smallest subring (resp.
subfield) is denoted by F[S] (resp. F(95)).

Definition 2.3. Given a field extension K/F, an element u € K is called algebraic
over F is there is a polynomial P(X) € F[X] such that P(u) = 0 in K. The field
extension ' C K is algebraic, if all elements of K are algebraic over F.

Theorem 2.4. If K/F is a finite field extension, then it’s algebraic. On the other
hand, if u € K is algebraic over F then [F(u) : F] < 0o, where F(u) is the samllest
subfield of K containing F and u.

Proof. If F C K is finite, for any v € K, {1,u?,...,u", ...} will be dependent. This
proves the first statement.

On the other hand, we consider the F-morphism f : F[X] — K, X +— u. Then
FIX]/I = im f = Flu], which is an integral domain. Since F[X] is PID, I = (P,)
generated by a monic prime polynomial P,. But in a PID, every prime ideal is
maximal, thus F[X]/(P,) = Flu] is a field and F[u] = F(u). The monic irreducible



polynomial P, is called the minimal polynomial of u. If [F(u) : F| = deg(P,) <
0. ]

Remark 2.5. If u,v € K are algebraic over F', then u - v and u + v are algebraic
over F' as well. It’s easy to prove, just considering F'(u,v), since [F(u,v) : F| < oo.
Similarly, if E/, E" are subfields of K containing F', which are algebraic over F', then
E - E' is algebraic over F' as well.

Theorem 2.6. Given field extensions F C E C K, if E/F and K/E are algebraic,
then K/F is algebraic as well.

Proof. Assume u € K, its minimal polynomial over F is P, = X" + a,_1 X" ! +
.-+ 4 ap, where a; € E. Since E is algebraic over F, [F(a;) : F| < oco. Then
[F(ag, ...,an_1) : F] < H;:OI[F(ai) : F] < co. Then w is algebraic over F'(ay, ..., ap_1),
hence algebraic over F'. O]

Lemma 2.7. Given a field extension K/F, u € K is algebraic over F and P, is the
minimal polynomial of w. If E/F is another field extension and there is an element
v € E such that P,(v) = 0 in E, then there is a unique embedding F(u) — E such
that u — v.

Proof. F(u) = F[X]/(P,).
FIX] —— B
| s )

FIX]/(P.)

Since P,(v) = 0, there is a unique morphism F'(u) — E. O

2.1 Splitting Fields and Algebraic Closure

Definition 2.8. Given a field extension K/F, P € F[X] splits in K if P factors
as
P(X)=cX —uy) ... - (X —up)

where c € F, u; € K. We say K is a splitting field of P over F' if K is the smallest
field in which P splits.

This definition means that the splitting field K of P is generated by its roots.

Theorem 2.9. For any P € F[X] there exists a splitting field K of it over F' (unique
up to isomorphism) and moreover [K : F| < n! where n := deg(P).



Proof. We prove the unique existence of splitting field by induction on the degree of
P. Ifn=1,P =c¢X —u). Since ¢,cu € F, u € F, then K = F. We assume it’s
true for n — 1, deg(P) = n, and P doesn’t split in F. We write P as P = [[, Q;
where (); is irreducible. Choose one @); = @, deg() < degP. We consider the field
F = F[X]/(Q)u= X, [F : F] = deg(Q) < n. All coefficients of P are in F, thus
P(X) € Fi[X]. But P(u) =0, P(X) = (X —u)Pi(X), deg(P1(X)) =n — 1. Then
there is a unique splitting field K of P, over F} and [K : Fj] < (n—1)!. According to
the definition of splitting fields it’s obvious to see K is a splitting field of P over F'
and [K : F)=[K : Fy]-[F\: F] < (n—1)!-n=mnl If K’is another splitting field of
P over F, then according to the Lemma [2.7] there is an embedding F; < K’. Then
K’ will also be a splitting field of P, over Fj. Since deg(P;) =n—1, K = K.

Note though the splitting field is unique, isomorphisms between them may not
be unique. [

Definition 2.10. A field I is called algebraically closed if for any algebraic field
extension K/F, K = F. K/F is called an algebraic closure if it’s algebraic and
K is algebraically closed.

According to the definition, we know K is algebraically closed iff every polynomial
P(X) € K[X] with deg(P) > 1 decomposes in K[X] into a product of linear factors
P(X) =c][,(X —u;) where c € K*,u; € K.

Theorem 2.11. The algebraic closure F of F always exists and is unique up to
isomorphism.

To prove the theorem above, we need to know Zorn’s lemma, which is equivalent
to the axiom of choice.

Lemma 2.12 (Zorn). let M be a partially ordered set such that every subset of M
that is totally ordered with respect to the order induced by M admits an upper bound
win M. Then there exists a maximal element in M.

Proposition 2.13. Every field F' admits an extension field K which is algebraically
closed.

Proof. The construction process of K will be based on polynomial rings in infinitely
many variables over F' following E. Artin. In the first step we set up a field K;
extending F' such that every f € F[X] with deg(f) > 1 admits a zero in K;. To do
this we consider the system of variables X = {X/,|f € F[X], deg(f) > 1} and F[X].
We assume the ideal I = (f(Xy)) is generated by all polynomials of one variable
f(Xy) where f € F[X], deg(f) > 1. We prove it’s a proper ideal in F'[X] first.

If I = F[X], then we have the equation

> gifilXy) =1
=1
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There will exist a field F’ containing F' such that every polynomial f; has a root wu;
in F’. We can construct F” as follows. First choose an irreducible factor hy of f; over
F,and let F; = F[X]/(h1). Then choose an irreducible factor hy of f5 over Fj, since
fa € Fi[X], then Fy, = F1[X]/(hy). Continuing this process, we will finally obtain
such F.

Now we consider the F-morphism F[X] — F’ such that Xy, — u;, other X — 0.
Then the equation above of left hand vanishes. A contradiction! Thus I is proper.
We choose a maximal ideal m of F[X] containing I and let K; = F[X]/m. Then
there is a canonical map

F < F[X] - F[%]/m = K,

The residue class of X; in K is denoted by X, and it’s a root of f(X). Continuing
this process, we obtain the sequence

F:KogKngQQ

Let K = U2, K;. We prove it’s algebraically closed. Given any polynomial f € K[X],
all coefficients will lie in some K,. Then it has a root in K,,;. f will factor as
f = (X —w)fi, where f; € K,,;. Continuing this factorization process, we will
finally obtain f = c¢[[,(X — u;) where c € K*,u; € K. O

Proof of Theorem 2.11. According to Proposition[2.13] there is an algebraically closed
field K extending F'. We define

F = {u € K|u is algebraic over F'}

From the Remark , we know F is actually an algebraic field extension of F. Given
f(X)=a, X"+ -+ +ap € F[X], then all roots v; of it are in K, which means these
v;’s are algebraic over F(ay, ..., a,) hence algebraic over F and then v; € F.

Next we will use the Lemma and Zorn’s lemma to prove the uniqueness
of the algebraic closure, which is the corollary of the next proposition, though the
isomorphism between algebraic closures are not unique nor canonical. O

Proposition 2.14. Given a field extension L/F and a field morphism o : F — K
such that L/ F is algebraic and K is algebraically closed, then o can be extended to be
an extension o' : L — K. If moreover, L is algebraically closed and K is algebraic
over o(F), then every extension o’ of o is an isomorphism.

Proof. If u € L and P, € F[X] is the minimal polynomial of u over F, then o(P,)
has a root v in K and according to the Lemma [2.7], there will be a unique morphism
F(u) = K,u — v. Let M be the set of pairs (F,7) such that E is a subfield of L
containing F'and 7 : F — K extends 0 : F — K. (E,7) < (E',7") if E C E' and



7" extends 7. The statement above shows M is not empty. If N is a totally ordered
subset of M, it’s obvious to see it has an upper bound E' = UgenyE,0'|E = 0. By
Zorn’s lemma, there is an maximal element (E’,¢’) in M. According to the Lemma
2.7, we can conclude E' = L.

If moreover L is algebraically closed and K is algebraic over o(F') hence algebraic
over ¢/(L), there is a morphism p : K < L extending ¢'~' : ¢/(L) — L. Then
oo = idy, and u is surjective. Hence p is an isomorphism, whose converse is
o' O

In the following, for every field F' we always fix an algebraic closure F, and its
field extensions considered are contained in F'.

Example 2.15. The complex field C is an algebraic closure of the field R of real
numbers. There is a generalization of this example, which is called Artin-Schreier
theorenyl| that if £ is the algebraic closure of F and 1 < [F, F] < oo, then [F': F] =2
and —1 is not a square root in F, which means F' = F(y/—1).
From the proof of the Theorem we know if Q is the field of rational numbers,
then
Q = {u € C | u is algebraic over Q}.

Therefore there are only countably many elements in Q and then Q # C.

Exercise 2.16. Let p be a prime number. Decide the splitting field (in the algebraic
closure Q) of X? — 2 € Q[X].

2.2 Normal Extension

Definition 2.17. A field extension F C K C F is called normal, if every irreducible
polynomial P(X) € F[X] admitting a zero in K splits over K (which means all its
roots in F' are in K ).

Theorem 2.18. The following statements are equivalent:
(1) K/F is normal.
(2) Every F-embedding 1 - K — F satisfies 1(K) C K.
(3) Homp (K, F) = Homp(K, K).

If moreover [K : F| < oo then the above statements are equivalent to that K is a
splitting field of some P(X) € F[X].

1See [Jac89] Theorem 11.14 or [Bos18] Section 6.3 for details.




Proof. The equivalence of (2) and (3) is obvious and we only prove the equivalence
between (1) and (2).

(1) = (2) Assume K/F is normal, u € K and P, is the minimal polynomial of u
over F. Then all roots of P, are in K. For any F-embedding ¢ : K — F, (u) is a
root of P, since ¢(P,(u)) = P,(t(u)) = 0. Then v(u) € K, «(K) C K.

(2) = (1) If the irreducible polynomial P € F[X] has a root u in K, then P = P,
is the minimal polynomial of u over F. If v (may equal u) is another root of P in F,
then there is a morphism F(u) — F,u + v, which can be extended to be 1 : K — F
according to Proposition [2.14] Then «(u) = v € K. Hence K/F is normal.

Now suppose [K : F] < oo. First we assume F' C K is normal and choose
uy € K — F. Then its minimal polynomial is P,, and [K : F(u;)] < [K : F]. Next
we choose us € K — F(up). Continuing this process, we conclude K — F(uy, ..., u,).
Let P =[]\, P,,, and then K is the splitting field of P.

On the other hand, if K is the splitting field of P € F[X] whose roots in F are
{u1,...;un}. Then K = F(uy,...,u,). Consider an F-embedding ¢ : F(uy, ..., u,) —
F, since 1(u;) is a root of P as well, ¢(u;) € K. Hence «(K) C K. O

Corollary 2.19.

(1) For field extensions F C E C K C F, if K/F is normal then K/E is normal.
But E/F is not necessarily normal.

(2) If E/F and E'/F are normal, then E - E'/F is normal.

Proof. (1). Given an element v € K, P, and P, are its minimal polynomials over F'
and F respectively. Then P/|P,. Since all roots of P, are in K, all roots of P/ are
also in K. HenceK/FE is normal.

(2). Given any embedding ¢ : E - E' — F, since E/F and E’/F are normal,
(E)CEWE)CE. Then «(E-E')C E-FE' Then E- E'/F is normal. O

Remark 2.20. The property of being normal is not transitive, i.e. for field extensions
FCFECK,if FCFE and F C K are normal, the field extension F' C K need not
be normal. For example Q C Q(v/2) and Q(v/2) C Q(v/2) are normal since they
are of degree 2. But Q C Q({‘/?) is not normal. Indeed, the polynomial X* — 2 is
irreducible over Q according to the Eisenstein’s criterion, and v/2 -1 is also a root of
X*—2 buti g Q(v2) CR.

Moreover, the splitting field of X*—2 is Q({L/i i) since its roots are V2, —/2,v/2-
i,—+v/2 - 4. Then for field extensions Q C Q(v/2) € Q(+/2,4). Though Q C Q(+v/2,1)
is normal, Q C Q(+/2) is not normal.



2.3 Separable Extension

Definition 2.21. Given P(X) € F[X] (may not be irreducible), it is called sepa-
rable if it has no multiple roots in F, otherwise inseparable.

For a field extension F' C K, an element u € K 1is called separable if its minimal
polynomial P, is separable. The field extension ' C K is called separable if all

elements of K are separable.

For a polynomial P(X) = Y, ax X* € F[X], we define its derivative P'(X) =
Zk kaka_l.

Lemma 2.22. Given a polynomial P(X) € F[X], it has multiple Toots in F iff
(P,P") # 1 in F. Moreover if P is irreducible, then P has multiple roots iff P' = 0.

Proof. Write P(X) = ¢[[,(X — w;), then
P(X) = CZ(X —g) e (X =) (X = i) e (X — ).

If P has multiple roots, say u; = ug, then P'(u1) = 0 and so (X — w)|(P, P).
Conversely, if u; # u; for any ¢ # j, then P'(u;) # 0 for any 1 < i < n, thus
(P, P =1.

If moreover P is irreducible, then(P, P") = 1 or P. Hence P has multiple roots iff
(P, P") = P. But degP’ < n — 1, we must have P’ = 0. O

Remark 2.23. If char(F') = 0, any nonconstant polynomial P will have a non zero
derivative P’. Therefore, any field extension of characteristic 0 is separable. But it’s
not true when char(F) =p > 0.

For example, let I = F,(t) = Q(F,[t]) the function field over the finite field
F,. Suppose P(X) = X? —t € F[X]. According the Eisenstein’s criterion ¢ is a
prime element of F,[t] and ¢[¢,t* { ¢,t 4 1. Then P(X) is irreducible in F,[¢][X] hence
irreducible in Q(F,[t])[X] = F[X]. But P(X) is inseparable since P'(X) = pX?~! =
0. The splitting field of P is not separable.

Since all field extensions of characteristic 0 are separable, we assume char(F) =
p > 0 in the following.

Exercise 2.24. A field F is called perfect if every irreducible polynomial F[X] is
separable. Prove the following statements.

(1) A field F' with F = p > 0 is perfect iff F? = F.
(2) Every finite field is perfect.



Remark 2.25. P(X) € F[X] is an irreducible and inseparable polynomial. Then P
has multiple roots in £ and P’ = 0. If P =Y, a3 X*, then P’ = Y, ka;, X*1 =0,
pthk = a,=0. Hence P = 3, apu XP* = Pi(XP), where P; = Y, ax X" € F[X].
Since P is irreducible, P; is irreducible as well. If P; is separable, we are done.
Otherwise, we continue this process. Since deg(P) < oo, finally we will obtain an
irreducible and separable polynomial P, such that P(X) = P,(X?"). n, = deg(P,) =
n = ng - p° = deg(P). Here ny is called the separable degree and p° is called the
inseparable degree of P.

Lemma 2.26. Given a field extension K/F, u € K is separable over F iff F(u) =
F(uP).

Proof. We assume u is separable first. Then F} = F(u?) C F(u). Consider the
polynomial X? —u? € F1[X] and u is a root of it. Let P be the minimal polynomial
of u over F; = P|X? —uP. But X? —u? = (X — u)P. Thus P = (X — u)* for some
integer k. Since P is separable and all roots of it are different, P = X — u. Hence
u € Fy. Then F(u) = F(uP).

On the other hand, we assume F(u) = F(u?). Let P be the minimal polynomial
of w over F. If P is not separable, then P(X) = P;(X?) according to the Remark
2.25] Since Py is irreducible and P(u?) = 0, P, is the minimal polynomial of u”.
Then [F(u) : F] = [F(u?) : F| = degP = degP, = p-degP,. A contradiction! Hence
P is separable and u is separable. O

Proposition 2.27.

(1) F C E C K are field extensions. K/F is separable iff E/F and K/E are separa-
ble.

(2) If E/F and E'/F are separable, then E - E'/F is separable.

The part of = of (1) is trivial. But the part of < is not easy and we need more
characterizations of the property of being separable.
Lemma 2.28. Assume [K : F| =d < oo. The following statements are equivalent.
(1) F C K is separable.
(2) K = F-K?, where K = {kP|k € K} a subfield of K since char(F) = char(K) =
p>0;
(3) There is a basis {e,...,eq} of K over I such that {e},...,e"} is still a basis.
Proof. (1) = (2): Since all u € K are separable over F, F(u) = F(u?) according to
the Lemma [2.26| Then v € F(u?) C F - KP. Hence K C F'- KP. F-KP C K is

obvious.
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(2) = (3): Assume K = Fe; @ ... ® Fey. Then k =), fie; = kP =", fre?.
Hence KP = FPel 4+ ...+ FPel. F - KP = Fel + ...+ Fel, = K. Since [K : F| = d,
{el,...,eh} is still a basis. Also from F' - K = Fel + ... + Fel, = K, it’s obvious to
see (3) = (2).

(2) = (1): We assume u € K is inseparable. Then if P is the minimal polynomial
of u, then P(X) = P(X?) = >, jarXP*. P(u) = 0 = {1,u?,...,u"} are linearly
dependent, but {1, u,...,u"™~'} are linearly independent. Accordting to the proof of
(2). = (3)., {1,u?,...,uP™~D} are linearly independent. But n < 2n — 1 < pn — 1,
{1,uP,...,u™} C {1,u?, ..., uP™~D} are linearly independent. A contradiction! [

Lemma 2.29. A simple algebraic extension F(u)/F is separable iff u is separable
over F.

Proof. The part of = is trivial and it’s enough to prove the part of <. If P(X) €
F[X] is the minimal polynomial of u over F, P(X) = >, ax X" with deg(P) = n,
then {1,u,...,u" '} form a basis of F(u) over F. We prove {1,u?,...,u?®™ D} is a
basis as well. If this is true, from the Lemma [2.28) F C F(u) is separable. If this
is not true, there will exist {b;} which are not all zero such that >, byu™ = 0. Let
Pi(X) =3, by X*, with deg(P) <n—1. Pi(u?) = 0. Then [F(u?) : F] < deg(P;) <
n — 1. But since u is separable, according to the Lemma [2.26] F'(u) = F(u?), [F(u) :
F) = [F(uP) : F] = n, a contradiction! Hence {1, u?,...,uP"~V} is a basis as well. [

Proof of Proposition 2.27. (1). We only prove the part of <. If [K : F] < oo,
K=FE-KP=(F-EP)-KP=F.(E?-KP)=F-KP. Hence K/F is separable.

If [K:F]=o00,ue K and P, € E[X] is the minimal polynomial of u over E.
P(X)=X"+a, 1 X" '+ ...+ ap. Consider F C F(ag,...,a,,) € F C E(u) C K.
Since £/ F is separable, according to the part of = of 1., we know F'(ay, ..., ap—1)/F is
separable. And since the minimal polynomial of u over F'(ay, ..., ay,) is just P,, which
is separable. Then from the Lemma [2.29] F(ag, ..., an,,u)/F(ag, ..., an,) is separable.
Since [F(ag, .., an,,u) @ F] < 00, F(ag, ..., an,,u)/F is separable and especially u is
separable.

(2). Assume u € E,u' € FE and their minimal polynomials are P, and P, respec-
tively. Then since u is separable, F'(u)/F is separable. The minimal polynomial of
u over F(u) divides P,, hence separable as well. Then F(u,u’)/F(u) is separable
= F(u,u')/F is separable. Hence u - v/, v+« and u — v are all separable. This
proves the part of (2). O

According to the proof of the part (2) above, we know given an algebraic extension
K/F, all separable elements in K form a subfield containing F', which is denoted by
K. Especially if K = F, F, is denoted by Fy., and called the separable closure.
This motivates us to study Ks/F and K/K; respectively, which is the task in the

next subsection.
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2.4 Purely Inseparable Extension

Definition 2.30. For an algebraic extension K/F, the separable degree is defined
to be [K : Fl|, = [Ky : F| and the inseparable degree is [K : F|; = [K : K.

Definition 2.31. A polynomial P(X) € F[X] is called purely inseparable if it
admits only one zero u € F. Given an algebraic extension F C K, u € K is called
purely inseparable if it’s the root of a purely inseparable polynomial in F[X]. This
algebraic extension is purely inseparable if all its elements are purely inseparable over
F.

Remark 2.32. If P(X) € F[X] is monic, irreducible and purely inseparable with
deg(P) = p"m > 1 where p f m, then according the Remark P(X) = P (XP),
with P, monic and irreducible. P(X) =0 < P(X%) =0 Xr=us X =u,
which means P, is purely inseparable. Continue this process. Finally we obtain
P.(X) with deg(P.) = m. But P. is also purely inseparable, if m > 1 then it’s
inseparable and hence p|m. A contradiction! Therefore m = 1 and P(X) = X?* — ¢
where ¢ = w?". In a summary, given an algebraic extension K/F, u € K is purely
inseparable iff u is the root of a polynomial X*" — ¢ € F[X] iff u?" € F for some n.

Fact 2.33.

(1) If K/F is a finite purely inseparable extension, then [K : F| is a power of p.

(2) If E/F and K/E are purely inseparable, then K/F is purely inseparable as well.
(3) If E/F and E'/F are purely inseparable, then E - E'/F is purely inseparable.

Proof. (1). Since K/F is finite, u € K is the root of some polynomial X?" —c € F[X].
Hence the degree of its minimal polynomial is the power of p. Moreover, if E is any
subfield of K containing F', then the minimal polynomial of u € K over E divides
that over F', hence whose degree is the power of p as well. Since K = F(uy, ..., u,)
we conclude [K : F| = [F(ug, ....,tp) @ F(ug, oco;tty1)] . - [F(ug) : F] is a power of
P.

(2). Let u € K. Since K/FE is purely inseparable, there is some n such that
w”" € E. E/F is purely inseparable as well. Then (u?")?" = u?""™" € F. Therefore
K/F is purely inseparable.

(3). For any v € E,v € E', there are integers n and m such that u?",v"" € F.
Then (u-v)?""", (u+v)”""" € F. Hence E - E'/F is purely inseparable. O

Proposition 2.34. K, C K is purely inseparable.

Proof. Assume u € K and P is the minimal polynomial of u over K. According
the Remark [2.25] there is an irreducible and separable polynomial P, such that
P.(X?") = P(X). Then P,(u”") = 0, which means P, is the minimal polynomial of
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uP” over K, and uP" is separable over K,. Thus u”" € K, and then P,(X) = X —u?".
P(X) = XP" —u?" and u is purely inseparable over K. O

Remark 2.35. If F'(u)/F is a simple algebraic extension, then we prove [F(u) :
Fls = ns where ng comes from the Remark and is the degree of P,.

Proof. Since u¥" is separable, F(u?") C F(u),. If v € F(u), — F(uP") is separable
over F and is independent from {1, u?",...,u?" ™~} According to the Lemma
F(u?*,v) = F(uP",v"") and then v is independent from {1,u?", ..., u?* =D}, Since
{1,u,...,uP™~1} form a basis of F(u) over F, v = 3, aju* and v** = 3, a? u’".
Since uP"s is a linear sum of u?* | v is a linear sum of u?* as well, where 0 < k <
ns — 1. A contradiction! Hence F(u”") = F(u)s and n, = [F(u*") : F] = [F(u), :
F]. O

Theorem 2.36. Given a finite algebraic extension K/F, we have the following equa-
tion -

[K : F|s = |Homp(K, F)|
then |Homp(K, F)| < [K : F] and |Homp(K, F)| = [K : F] iff [K : F] = [K : F), iff
F C K is separablef]

Proof. Consider F C K, C K. We first prove Homp(K, F) = Homp(K,, F). In
fact there is a map Homp(K, F) — Homp(K,, F),7 — 7|K,. According to the
Proposition [2.14] this map is surjective. Thus it’s enough to prove it’s injective.
From the Proposition [2.33| we know K, C K is purely inseparable, which means
every u € K is the only root of a polynomial X?" — ¢ € K,[X], where ¢ = u?".
In fact, given any 7 : K — F, we assume v = 7(u?") = 7(u)?". Then consider the
polynomial X?" —v € F[X]. If v’ is a root of it, then X?" —v = (X —v’)P". Hence the
root v’ is unique. But since 7(u) is the root of X?" —7(¢c) = XP" —v, 7(u) = v', which
means 7 is determined by 7|K, and we could only consider F-morphisms K, — F.
Given a separable element v € K, P is its minimal polynomial over F' with
deg(P) = n = [F(v) : F]. Then P is irreducible and separable, whose roots are
all different in F. According to the Lemma , there are only n’s different F-
morphisms F(v) — F. By induction, we conclude [K, : F] = |Homp(K,, F)| =
|Homy(K, F)|. O

2.5 Appendix on Finite Fields

In this section, we review some basic facts about finite fields. Actually all finite
fields are of the form F, having ¢ elements where ¢ = p" and p is prime. Note [F, is
different from Z/qZ if n > 1.

2In some textbooks such as [Bos18] and [Lan02], the equation above is the definition of the separable degree. And
to prove the equation without the assumption of finite degree we may need the transfinite induction.
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Remark 2.37. If F is a finite field, then char(F) = p > 0, therefore F, C F and
it’s a finite algebraic extension. Viewing IF as a vector space over F,,, we know there
must be ¢ = p” elements in F. Then the multiplicative group F* has order ¢ — 1 and
all elements of F* are roots of the polynomial X9 ! — 1. Hence F is the splitting
field of X9 — X over FF,,. According to the Theorem [2.1§] it’s normal.

On the other hand, if ¢ = p" then all roots of X? — X in F, form a subfield, since
(u4v)P" =u?" +oP".

Lemma 2.38. Let I be a field and H is a finite subgroup of the multiplicative group
F*. Then H s cyclic.

Proof. For all elements of H there exists one a € H with the maximal order m. Let
H,, be the subgroup of all elements in H whose order divides m. Then all elements
of H,, are zeros of the polynomial X™ — 1. Hence |H,,| < m. But < a >C H,,
therefore H,, =< a > and it’s cyclic. If there is some b € H — H,, whose order
n doesn’t divides m, then there will be an element with order lem(n,m) > n. A
contradiction! Hence H,, = H. O

Corollary 2.39. For any finite field ¥y, its multiplicative group By is cyclic.
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3 Galois Theory

We fix some notations first.
If K/F is a field extension not necessarily algebraic, we define

Autp(K) :={7: K 5 K| 7|F = idr}

then Autp(K) is a group. For any two 7,0 € Autp(K), welet 0-7=0co7: K &
K5 K.

Fact 3.1. If K/F is algebraic, then Autp(K) = Homp(K, K).

Proof. Given any F-morphism 7 : K — K, we know it’s injective and it’ enough to
prove it’s surjective. We assume v € K and P € F[X] is its minimal polynomial
over F. If uy, ..., u, are its different roots in F', we assume only u1, ..., u, are in K.
Then u € {uy,...,u,}. Since 7 fixes F', 7(u;) is also a root of P in K where 1 <i < r.
Then 7 : {uy,...,u,} — {u1,..,u,}. That 7 is injective implies it’s surjective on this
subset as well, which means Ju;, 7(u;) = u. O

There are tow operations we should know:

1. If H < Autp(K), K7 :={u € K|V7 € H,7(u) = u} a subfield of K containing
F.

2. If FCFECK, then Autg(K) < Autp(K).
and it’s obvious to see

1. If H, < H,, then KH2 C KHt,

2. If By C Es, then Autg,(K) < Autg, (K).

Definition 3.2. An algebraic extension K/F is called Galois if it’s normal and
separable. And the Galois group is defined to be Gal(K/F) := Autp(k).

Remark 3.3. If we assume K/F is Galois, then Homp(K, F) = Homp(K, K) =
Autp(K) = Gal(K/F). In particular if K/F is finite, |Gal(K/F)| = [K : F] accord-
ing to the Theorem [2.36

Remark 3.4. Given an algebraic extension K/F, there exists a smallest normal
extension N/F such that K C N C F and this normal extension is called the
normal closure. If K = F(4) where 4 = {u;} is a family of elements in K and P;’s
are their minimal polynomial over F'. If M/F is any normal extension containing K,
then all roots of P, are in M. Let N be the field generated by all roots of P, in F.
Then F C K C N C M. Consider the F-embedding ¢ : N — F, which is determined
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by its values on roots of those P;. But if u is a root of P, then ¢(u) is a root of P
as well. We see ((N) C N. According to the Theorem N/F is normal. Hence
N/F is the normal closure of F//K. And this normal closure is unique, since it’s the
intersection of all such M.

If K/F is finite, then the family $ has only finitely many elements and there are
only finitely many polynomials P;, hence [N : F] < co. Moreover if we assume K/ F is
separable, then N = K (uy, ..., u,) where u; is some root of irreducible and separable
polynomial P; € F[X]. According to the Lemma N/F is finite separable, hence
finite Galois.

For any algebraic field extension K/F we define the Galois closure to be the
smallest Galois extension F/F such that F C K C E C F. If K/F is finite separable,
we have seen that the Galois closure is just the normal closure of K/F which is finite
as well.

Example 3.5. Q(+/2)/Q is not normal. The irreducible polynomial X* — 2 has
roots /2, V23, /262, where & = 5 = —1 4+ 1V3iand & = —1 — 1V/3i. Though
V2 € Q(V/2), the other roots are not in Q(+/2). But Q(+/2)/Q is finite separable.
Hence its Galois closure is just its normal closure Q(+¥/2, &3) = Q(+3/2,v/34) of degree
6 over Q.

Now we try to introduce the most important theorem Galois correspondence
between group theory and field theory. But before that we should prove a general
but difficult lemma of E. Artin. The following lemma is a summary of sections 5.6
and 5.7 in [Art07].

Lemma 3.6 (E. Artin). Let K be a field and H = {1y, ..., 7,} is a finite subgroup of
Aut(K). If E = K%, then K/FE is finite Galois with degree [K : E] = |H| = n.

We divides three steps to prove this lemma.

1. Step 1: [K : E] > n.

2. Step 2: [K : E] <n.

3. Step 3: K/FE is Galois i.e. normal and separable.
To prove the step 1, we need the following lemma:

Lemma 3.7. Let K be a field and H = {m,...,7,} is a finite subset (not necessarily
a subgroup) of Aut(K) whose elements are all different. If there are ¢; € K such that

a7 (x) + ... + () =0

forallz e K, thenc; =0,i=1,....n.
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Proof. If there are non trivial relations among 7;, we may assume
an(z)+..+en(x) =0

for all x € K such that ¢; # 0 for i« = 1,..,r and r is the smallest one. Evidently
r > 2, otherwise r = 1 and ¢;7(z) = 0 for all x € K. Since 71 is an automorphism,
it’s impossible. Replacing z by ax where a € K*, we have

an(a)n(z)+ ... +cer(a)r(x) =0
This yields the following relation:
cilr(a) — mr(a)]m(x) + ... + ¢, [mr1(a) — 7(a)|7 1 (z) =0

which is shorter than we have assumed. Hence 7;(a) = 7,.(a) where i = 1,...,r — 1
for all a € K*, which means 7, = 7,, r > 2. A contradiction! O

Proof of Lemma 3.6. Step 1: [K : E] > n.
Assume [K : E] =r < n and let xy, ..., 2, be a basis of K over E. Then for each
y € K there are ¢; € E such that

Y=C21+ ... + Ty

Consider the r x n matrix (7;(z;)) with rank < r < n. Hence there are & € K not
all trivial such that &7 (x;) + ... + &ura(z;) = 0 for all 1 < i < n.

517'1(.131) + ...+ énTn(LEl) =0

&ri(zy) + ...+ &m(z,) =0

Multiply the ith equation above by ¢; € E. Since E = K, 7;(¢;) = ¢;. Then

&imi(eiwy) + .o+ &ma(ciry) =0

Grlea,) + ...+ &m(er,) =0

hence &7 (y) + ... + & (y) = 0 for all y € K. According to the Lemma [3.7] & = 0.
A contradiction.

Step 2: [K : E] <n.

We prove all n 4+ 1 elements of K are linearly dependent over E. Assume
V1, ooy Upg1 € K with v; £ 0 for all = 1,...,n+ 1. Then we consider the n x (n+ 1)
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matrix (7;(v;)) whose rank < n < n+ 1. Hence there are ¢; € K not all trivial such
that ¢17;(v1) + ... + cua1Ti(Vpy1) = 0 for all 1 < i < n. We may just assume ¢; # 0.

017'1(1]1) + ...+ Cn+1T1(Un+1) =0

ClTn(Ul) + ...+ cn+17—n(vn+1) =0

Note since H is a group, {7;71, ..., ;7,,} will still be H, which means if a = 7 (z)+...4+
To(x),x € K then a € E, because 7;(a) = >_; 7;7j(x) = >, 7j(x) = a. Moreover if
x # 0, then there exists a A € K* such that a = 7 (Ax) + ... + 7,(Az) # 0. Otherwise
71 + ... + 7, = 0 on K, which is impossible according to the Lemma [3.7]

Since Ac17;(v1) + ... + Acpi17i(vny1) = 0 as well for all 1 <4 < n, after choosing A
such that 7 (Acy) +... + 7, (Acp) # 0, we can just assume ay = 71(c1) + ... +7n(c1) # 0.
Applying 7; to the system above, we obtain

Tj(Cl)TjTl(’Ul) + ...+ Tj(0n+1)TjT1(Un+1) =0

Tj (Cl)Tan(Ul) —+ ...+ Tj<0n+1)Tan(Un+1) =0
which is equivalent to the original one since {771, ..., 7;7,} = H. And we have

Ti(c1)mi(v1) + oo + Tj(Cng1)Ti(Vpng1) =0

for all 1 <4 < n. Then a; = }_;7(c;) € E are also the solution of such system,
which means a;7;(v1) + ... + @117 (Vne1) = 0. Hence ajvy + ... + @y 10,41 = 0 where
a; # 0, which means {vy, ..., v,41} are dependent over E.

Step 3: K/F is Galois i.e. normal and separable.

Since [K : E] =n, K/FE is finite. Let u € K and P is the minimal polynomial
of uw over E. Define O := H-orbit of u i.e. {r(u)|r; € H} with |O] < n. Let
Q = [loco(X — ). Since {7jm, ..., 77} = H, {7571 (u), ..., ;7 (u)} = O = 7;(0).
Then 7; : O — O is surjective. But since |O| is finite, 7; is injective as well. Hence
it’s a bijection. Then @ = [[,co(X —7j(a)) = 7;(Q), which means all coefficients @
are in E. H is actually a subgroup, idx € H. Therefore u € O and Q(u) = 0. P|Q.
Since all roots of @) are different and in K, all roots of P are then different and in
K. Thus K/F is normal and separable. O

Remark 3.8. Note if H in the lemma above is not a subgroup, then the step 2
will not be true. Assume F' is a field and F'(¢) is the field of rational functions over
F. Consider the automorphism f : F(t) — F(t),g(t) — g(t + 1). We suppose
g(t) = % where u(t),v(t) € F[t] and (u(t),v(t)) = 1. If g(t) = g(t + 1), then
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“R = HE S = u(to(t + 1) = u(t + Do(t). Since (u(t), v(t) = 1, o(t)]o(t +1). But

deg(v(t)) = deg(v(t+1)), then v(t+1) = v(t). v(t) =0 < v(t+1) = 0. Hence if v(t)
has a root  in F, then a+ 1 is a root of v(t) as well, which means v(¢) has infinitely
many roots. It’s impossible. Thus v(¢) has no roots and then v(t) € F. The same
argument implies u(t) € F' and then g(¢t) € F. Therefore the subfield fixed by f is

just F. But [F(t) : F] = oc.

Now we state the most important theorem in this section.

Theorem 3.9 (Galois Correspondence). If K/F is finite Galois, then there is a
one-to-one correspondence

{subgroups H of Gal(K/F)} «— {subfields E of K containing F'}
H+— K"
Gal(K/E) +— E (2)

Moreover E/F is Galois iff Gal(E/F) is a normal subgroup of Gal(K/F) and we
have the following one-to-one correspondence

{normal subgroups of Gal(K/F)} <— {Galois subextensions}
where Gal(E/F) = Gal(K/F)/Gal(K/E).
For simplicity we prove the following lemma first.
Lemma 3.10. If K/F is finite Galois, then KSE/F) =

Proof. Obviously F C KGE/F)  Now we suppose u € KCGUE/F) and P is its
minimal polynomial over F. If v is a root of P in F, according to the Lemma
there is a unique map F(u) — F,u + v. From the Proposition , this map can
be extended to be 7 : K — F,7(u) = v. Since K/F is normal, 7(K) C K. Then
7(u) = v € K. But u € K E/F) and 7 € Gal(K/F), then v = 7(u) = u. P is
separable = P = X — u, then u € F'. O

Proof of Theorem 3.9. Step 1. FF C E C K. K/E will be finite Galois. Then
KGal(K/E) — E.

Step 2: We prove Gal(K/KH) = H. Tt’s obvious to see H C Gal(K/K*). But
according to the lemma of E. Artin and Remark[3.3] |H| = [K : K"] = |Gal(K/K")|,
hence H = Gal(K/K*).

Step 3: We prove E/F is Galois iff Gal(K/FE) is normal. Let 7 € Gal(K/F),
F C 7(E) := {7(z)|x € E} which is a subfield of K. Given any ¢ € Gal(K/E),
ot ! € Gal(K/7(F)). And given any £ € Gal(K/7(E)), 77 € Gal(K/FE). Hence

Gal(K/7(E)) = 7-Gal(K/E) - 7!
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If E/F is Galois, especially E/F is normal. 7|E : E — 7(E) — F is an F-
embedding. Then 7(E) = E, for all 7 € Gal(K/F). On the other hand if 7(F) = E
for all 7 € Gal(K/F), since any F-morphism ¢ : E — F can be extended to be
some K — F and K/F is normal, ¢ : E — F can be extended to be an element
7 € Gal(K/F). 7|E = ¢ but according to the assumption 7(F) = F then ((F) = E.
Hence E/F is normal.

Therefore E/F is Galois iff 7(E) = E for all 7 € Gal(K/F) iff Gal(K/E) =
7-Gal(K/E) - 77! for all 7 € Gal(K/F) iff Gal(K/E) is a normal subgroup. The
second “iff” comes from the Galois correspondence we have proved in Step 1 and
Step 2. ]

Corollary 3.11. If K/F is a finite separable field extension, then there are only
finitely many subfields E of K containing F.

Proof. According to Remark 3.4 we could choose K’ to be the Galois closure of K/E
which is the normal closure of finite dimension. F* C K C K’, we can only prove

there are finitely many subfields between F' and K’. From the Galois correspondence,
the number of subfields is |Gal(K'/F)| = [K': F] < occ. O

Theorem 3.12 (Primitive Element). If K/F' is finite separable, then K = F(u) for
some u € K.

Proof. Step 1: Suppose F is a finite field. Then K is a finite field as well. According
to Remark , K = F, for some ¢ = p™. Corollary tells us Ff =< & > is
cyclic. Hence F, = F,(§) = F'(¢).

Step 2: Suppose F' is an infinite field. Since K is finite over F', we can write K =
F(uq,...,up)for u; € K. If n = 1 there is nothing to prove. By induction it suffices
to prove the case n = 2, i.e. K = F(uy,uy). For any r € F| consider the subfield
F(uy + rug). Corollary tells us that there are only finitely many intermediate
subfields between F' and K. and by assumption there are infinitely many elements
in F', there must exist 71,79 € F such that F(u; + rus) = F(uy + roug) = F’ with
r1 # ro. Then (r; — ro)us € F', and consequently uy, uy € F. O]

In general, such primitive element is difficult to find.

Exercise 3.13. Let K = F,(z,y) the field of rational functions in two variables. Let
F = KP. Prove that (1): K is not a simple extension of F’; (2): There are infinitely
many intermediate fields between K and F.

Proposition 3.14. (1). Assume E/F and K/F are finite Galois extensions. Then
E - K/F is finite Galois and the morphism

p:Gal(F-K/K) — Gal(E/ENK) < Gal(E/F)
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T+— T|E

1 an isomorphism

E-K

Wﬁ Galois
\ (3)

te Gal
fimite Galois L m K finite Galois

(2). The morphism
Y Gal(E - K/F) — Gal(E/F) x Gal(K/F)
T+— (7|E, 7|K)
is injective. Moreover if EN K = F then 1 is surjective hence an isomorphism.

Proof. (1). According to Corollary [2.19, we know E- K/F is normal. And according
to the Proposition , E - K/F is separable. Hence F - K/F is Galois. Since
E-K=F(FE,K), E,K are finite over F, E - K/F is finite as well. Hence F - K/F
is finite Galois.

Given any 7 € Gal(E - K/K), 7|[E : E — E - K — F. Since E/F is normal,
7(E) C E. Hence 7|F € Gal(E/ENK) is well defined. If 7|E = idg, since 7| K = idg
it follows that 7 = idg.x. ¢ is injective.

On the other hand, imy is a subgroup of Gal(E/E N K) and E™ = (E -
K)GUEE/K) N B = KN E. Then imp = Gal(E/E N K).

(2). Obviously, v is well defined and if 7|E = idg, 7|K = idg, then 7 = idg.k.
Hence ¢ is injective. If EN K = F, assume (01, 02) € Gal(E/F) x Gal(K/F). Since
F = ENK, by (1). o1 and oy can be extended to be 0] € Gal(E - K/K) and
o € Gal(E - K/FE) respectively. Let 7 = gboot € Gal(E- K/F). 7|K = ghoo}|K =
ohoidg = db|K = 09. T|E = dbo0o}|E = dhoo, = 0y. O

Definition 3.15. A Galois extension is called abelian (resp. cyclic) if the Galois
group is abelian (resp. cyclic).

Remark 3.16. If K/F is finite abelian, since any subgroup of an abelian group is
normal, for any intermediate field E between F' and K, E/F is finite abelian.
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Remark 3.17. If we assume E;;i € [ is a family of intermediate fields of F'//F such
that E;/F is an abelian Galois extension. Then consider the morphism

Gal(F(U:E;)/F) — | [ Gal(Ei/F), 7 = (7|E)ies

which is injective since F(U;E;) is the union of all F(uy, ..., u,) where u; € some E;.
Hence Gal(F(U;E;)/F) is abelian. Since u; € some E;, u; is separable over F'. Then
F(uy,...,u,)/F is separable, F'(U;E;)/F is separable. And consider the F-embedding
F(U;E;) «— F, its restriction on E; will be E; — E; which means F(U;E;) —
F(U;E;). Hence F(U;E;)/F is normal. F(U;E;)/F is an abelian Galois extension.

Using Zorn’s lemma, it’s obvious to see there is a maximal abelian Galois ex-
tension F'*/F, which is unique according to the statement above. Then if K/F
is any abelian Galois extension, then K C F®. In general F'**/F is an infinite
field extension. And in the infinite Galois theory (Remark we can prove
Gal(F®/F) = Gal(F,/F)® where F is the separable closure of ' and the latter
is the abelianlization of profinite groups.

Remark 3.18. The statement above also proves that K/F' is a/an (abelian) Galois
extension iff it’s a union of finite (abelian) Galois extensions over F.

Remark 3.19. Gal(Q/Q) is one of the most mysterious Galois groups in mathe-
matics and note Q/Q is separable since it has characteristic zero. It’s expected that
every finite group occurs as a quotient of it. And Grothendieck’s Long March through
Galois Theory is trying to understand Gal(Q/Q) via a concrete and geometric way.
On the other hand, the Kronecker-Weber theorem states that any finite abelian ex-
tension of QQ is contained in a cyclotomic extension. Extension fields of Q constructed
by adjoining a root of unity are called cyclotomic fields. Then Q% is obtained by
adjoining all roots of unity. If we assume Q™ = Q(e*™/™), then

Gal(Q™/Q) = limGal(Q™/Q) = lim(Z/nZ)* = 2~

where Z = limZ /nZ. 1t’s the subject of class field theory.
—

There is a local viewpoint as well, which is the subject of local class field theory.
The p-adic number field Q, is defined to be the quotient field of Z, which is the
set of formal sums >, axp®. The local Kronecker-Weber theorem asserts that any
abelian extension of Q, is contained in a cyclotomic extension. A local number field
F' is a finite dimensional extension of QQ,, whose ring of integers is denoted by Op.
Then in local class field theory

Gal(F®/F) =~ F* 27 x O
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We advise readers to consult the homepage of Milne for details. https://www.
jmilne.org/math/index.html. These contents above are all contained in his notes
Algebraic Number Theory and Class Field Theory.

Example 3.20. We study the Example in details here. The Galois closure

(normal closure) of Q(v/2)/Q is K = Q(%, &) = Q(V2,V/30).
/ We Galois of degree 3
\ /mte Galois of degree 2

G = —5 +3V3i, & = =5 —3V3i Q&) : Q] = [Q(v3i) : Q] = 2, which
means |Gal(Q(&;)/Q)| = 2 and then Gal(Q(&)/Q) = Z/27Z. |Gal(K/Q(&))| = 3,
then Gal(K/Q(&3)) = Z/37Z. Assume G = Gal(K/Q) and then it’s not abelian since
Q(v/2)/Q is not Galois. We prove G = Ss.

Let r € Gal(K/Q(&3)) such that r(&3) = &, r(3V/2) = v/2&.Then 72(v/2) = v/2€2,
r® = 1. Suppose a € Gal(K/Q(+v/2)) such that a(v/2) = v/2, a(&) = £2. a*(&) =
&3 = € then a* = 1. On the other hand

ara(V2) = ar(V2) = a(V2¢5) = V262
ara(&) = ar(&3) = a(&3) = & = &
then ara = r%. S3 = G = {1,a,r,r% ar,ar’lara = r*}. Then subgroups of G are
{1,(r),(a), (ar), (ar?), G}

Only < r > is nontrivial and normal. Using the Galois correspondence and the con-
nection between field dimensions and the number of elements in groups, we conclude:

H € {1,(r),{a), (ar), {ar®), G}

e {K,Q(&),Q(V2),Q(V2,&),Q(V2,£),Q}

Exercise 3.21. Let K = Q(w, ), where w = v/2 and i*> = —1. Show that K/Q is
Galois and determine G = Gal(K/Q). Write down all subgroups of G' and for each
subgroup H, the corresponding subfield K.

Exercise 3.22. Let & be a primitive 5th root if unity and K = Q(&5). Prove K/Q
is a Galois extension with Galois group isomorphic to Z/47Z. Determine K for each

subgroup H of Gal(K/Q).
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3.1 Galois Groups of Finite Fields

Recall contents of the Section [2.5] about finite fields. All finite field [F is the splitting
field of some X9 — X over F, where ¢ = p™, p = char(F) > 0. Then

F, = {all roots of X7 — X}

If there is a field extension Fy» C Fym and assume [Fym : Fyn] = 7, then p™ = (p")" =
p™", hence njm. On the other hand if m = n - r, since F. is cyclic and every root of
XP" — X is aroof of XP""— X then there exists a natural embedding F,.» C F,m C F,.

Theorem 3.23. If q is a power of p, then Fa/F, is finite Galois with
Gal(F . /F,) =2 Z/dZ
cyclic, generated by the Frobenius morphism Frob : x — x7 for x € Fa.

Proof. Fa/IF, is the splitting filed of X ¢ _ X with all roots different. Hence it’s
finite Galois. Especially Fa/IF, is finite Galois with |Gal(IF,a/F,)| = [Fya : Fy] = d.
Next we prove Frob € Gal(F,/F,) has order d. Since p|q, (x + y)? = 29 + y7
and (r — y)? = 2? — y?. And any element of F, is a root of X? — X. Hence
Frob is an automorphism with F, fixed. If m is the order of Frob, then Frob™ =
iqu T 24" =g forall xz € [F,a. There will be an embedding F ¢ C F,m. Therefore

dlm,d < m. Thenn d = m. O

Exercise 3.24. Write down an irrreducible polynomial of degree 2 in F3[X], say
f(X). Write down the multiplication table for FJ,, by identifying Fz» with F3[X]/(f).

3.2 Cyclotomic Extension

Let &, = e*™/™ be the n-th root of unity 1. Then all £*,0 < k < n — 1 are different.
The cyclotomic extension is defined to be Q(¢,)/Q.
Fact 3.25.

(1) The set of roots of X™ — 1 is {€¥|0 < k < n — 1} and Q(&,)/Q is finite Galois
since it’s a splitting field of a polynomial with all roots different.

(2) The primitive n-th root of unity 1 is defined to be a generator of the cyclic group
{€F|0 < k < n —1}. Then &* is primitive iff (k,n) = 1. Hence there are exactly
¢(n)’s primitive roots, where ¢(n) is the Euler’s function, ¢(n) =n][,, (1 - 1_19)

In the following, we want to compute Gal(Q(&,)/Q) and the process will need
Gauss Lemma.

24



Lemma 3.26 (Gauss). Let R be a unique factorization domain and h € R[X] a
monic polynomaial. If there is a factorization h = f - g such that monic polynomials

f and g are in Q(R)[X], then f,g € R[X].

We assume the minimal polynomial of &, over Q is P(X) € Q[X]. We define the
cyclotomic polynomial of . to be ®,(X) =[] imitive(X —&)- I 7 € Gal(Q(&,)/Q),
then 7 sends n-th primitive roots to n-th primitive roots. Hence 7(®,, (X)) = ®,(X),
which means all coefficients of ®,(X) are in Q. Then ®,,(X) € Q[X] and ®,(X)|X"—
1 in Q[X], hence ®,(X)|X™ — 1 in Z[X].

Example 3.27. ®(X) =X — 1, ®5(X) = X + 1, 3(X) = X2+ X + 1, Oy(X) =
X241,

Next we will prove P(X) = ®,(X).

Lemma 3.28. Let P(X) be the minimal polynomial of &, over Q. If p is a prime
with ptn and u is a root P(X), then u? is a root of P(X) as well.

Proof. If Q[X], X™—1 has a factorization X" —1 = P(X)Q(X), then P(X),Q(X) €
Z[X]. We assume u® is not a root pf P(X). Then u? is a root of Q(X) and u is a root
of Q(X?). But P(X) is the minimal polynomial of u, P(X)|Q(X?) in Z[X]. Consider
this relation in F,,. If we suppose in Z[X], Q(X?) = XP"+a,, 1 XP" "V + .. +ay, since
Va € F,,a? = a, then in F,[X], Q(X?) = Q(X)". Therefore P(X)|Q(X)" in F,[X].

If « € F, is a root of P(X)= a is a root of Q(X), which means « is a multiple root
of Xn —1¢eF,[X]. But (X" —-1) = nX' # 0 and then X™ — 1 has no multiple
roots. A contradiction! O

Theorem 3.29.
(1) ®,(X) is irreducible hence ®,,(X) = P(X).
(2) Gal(Q(6.)/Q) = (Z/nZ)*, hence |Gal(Q(&,)/Q)| = ¢(n).

Proof. (1). Since &, is a root of ®,,, P|®,. To prove ®,, = P, it’s equivalent to prove
every n-th primitive roots are roots of P as well. Assume k = [[,  ;..P;" With
r; > 1 and (k,n) = 1. Then p; { n. The lemma above implies £ is also a root of P.
Using the lemma above by induction, we see £* is a root of P.

(2). |Gal(Q(&)/Q)| = deg®,, = ¢(n). For 1 < k <n—1 with (k,n) = 1, we
define 7, : &, — £*. Since @, is irreducible and separable with all roots different, we
know

Gal(Q(6n)/Q) = Homg(Q(&n), Q(&n)) = {mll <k <n—1,(k,n) =1}
hence Gal(Q(&,)/Q) = (Z/nZ)*. O
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Fact 3.30. We recall some facts about the group (Z/nZ)*. Assume n = pi* . ... pkr
with k; > 0, then
(Z/nZ)* = (Z[py' L) x ... x (B[P} L)"

For (Z/p*Z)* with p prime there are two conditions:
L Ifp >3, (Z/p*2) 2 7)(p—1)Z x Z/p*'7Z is cyclic.
2. It p=2,(2/)22) = {1}, (Z/2*Z2)* = {1,3}, (Z/2°Z)* = {1,3,5,7} X Z/27 x
Z.)27. For k > 3, (Z/2F7)* = 7./27 x 7.2 7.
3.3 Compass and Straightedge Construction

In the compass and straightedge construction, we can only use straightedge to con-
struct the line passing through two given points and use compass to construct a circle
with given center O and radius r > 0.

New points have only three source:

1. Intersection of two lines.
2. Intersection of a line and a circle.
3. Intersection of two circles.

Remark 3.31 (Standard Construction). In elementary plane geometry, there are
two standard constructions.

(a) Given a segment AB, we can construct a circle with diameter AB.

(4)

(b) Given a line [ and a point P not in [, we can construct a new line !’ passing
through P such that I'//l or I’ L 1. At first draw a circle at the center P with radius
big enough to intersect [ with A and B. Then the process (a) will give the middle
point C of AB. PC' 1 [. Draw any other line [” L [. We construct I’ 1 ["” passing
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through P, then "'/ /1.

()

Definition 3.32. (a,b) € R? is called constructible if we can construct it from the
points O = (0,,0) and (1,0), using compass and straightedge. And a real number
a € R is constructible if (a,0) € R? is constructible.

It’s obvious to see a point (a,b) € R? is constructible iff @ and b are constructible
as real numbers. If the subset of constructible numbers of R is denoted by C, the
subset of constructible points in R? will C x C.

Proposition 3.33.
(1) C is a subfield of R containing Q.
(2) If c € C, then \/c € C.

Proof. (1). Since any field with characteristic 0 contains Q as a subfield, it is enough
to prove C is a field. If ¢ € C, drawing a circle at the center O = (0,0) with radius
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r=c, wesee —c € C. If a,b € C, we construct ab and a~! in the following picture:

N

~

\
\
_10//1 a ab

hence C is a field.
(2). If c € C, \/c is constructed as follows:

A

g
\

(7)
O

In the following we study the connection between constructible numbers in R
and field extensions over Q. Finally we will use these theorems to solve four difficult
problems in ancient Greece.

Let K C R be subfield. The plain of K means K x K CR x R.
e A line in K is a line in R? joining two points in the plain of K.
e A circle in K is a circle in R?, whose center lies in K x K and radius is in K.

Lemma 3.34.
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(1) The intersection of two lines in K is empty or a point in K X K.

(2) The intersection of a line and a circle in K is empty, one point or two points in
the plain of K(\/u), where u € R.

(8) The intersection of two circles in K is empty, one point or two points in the plain
of K(\/u), where u € R.

Proof. (1). Given two point (a,b), (¢,d) € K x K, the line passing through them are
(b—d)(x —a) — (a—c)(y —b) = 0. All coefficients of this line equation are in K.
Hence the intersection of two lines in K is empty or a point in K x K.

(2) and (3). The equation of a circle in K is (z — a)? + (y — b)* = r?, where
x,b,7 € K. Hence the intersection of a line and a circle or two circles in K is to
solve an equation of degree 2. [

Theorem 3.35. A real number ¢ € C iff there is a tower of fields Q = Ky C K; C
... € K,, C R satisfying the following two conditions

(i) c € K,,.
(ZZ) I:K/L'Jr]_ : Kl] =2, which means KiJr]_ = Ki(‘/uiﬂ) with Uj41 > 0.

In particular if ¢ is constructible, then c is algebraic over Q and [Q(c) : Q] is a power
of 2.

Proof. First we prove the part of =. Assume ¢ € C and (c¢,0) is constructible in
R2. Then (c,0) can be constructed in finitely many steps drawing a line or a circle.
In every step, new points are produced as the intersection of two lines, a line and a
circle or two circles, which means they will lie in the original plain of K; or in the
plain of K;(y/u) according to the lemma above. This proves the part of =.

«: Conversely if we assume such tower of fields exist, then the minimal poly-
nomial of ¢ over K,_; will be X? +aX +b € K,,_1[X]. Then (c,0) will be the
intersection point of the circle (X + £)* +Y? = % — b and the z-axis. According to
the Proposition [3.33] if u, v are constructed, uv, u + v or u — v will be constructed
then. Since a,b is a linear combination of 1 and /u,—1 over K, , the problem is
reduced to construct ,/u,—; over K, ». But (\/m, 0) is the intersection of the
circle X2 +Y? = u,_; and the z-axis, where u,_; € K,_5. The problem will then
be reduced to construct /u, . After finitely many steps we see c is constructible.

Consider Q C Q(c) C K,,, then [Q(c) : Q]|[K, : Q] =2" and [Q(c) : Q] =2F. O

Remark 3.36. The converse of the last statement of the theorem above is also true.
If K C R is a subfield with [K : Q] = 2" then K CC.
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Proof. First we replace K by its Galois closure K’ over Q. Given any u € K, the
degree of the minimal polynomial P of u over Q is a power of 2. If P has a root v not
in K, then the minimal polynomial () of v over K divides P hence whose degree is a
power of 2 as well. Then we will have [K (v) : Q] = 2". Since the Galois closure K’
of K/Q is just the normal closure of it, after finitely many steps of simple algebraic
extension, we conclude [K’ : Q] is a power of 2 as well.

Now we prove any group G of order 2", has a subgroup of index 2. Assume
the order of @ € G is maximal among all elements of GG. If the order of a is 2",
r > 1, we define the subgroup H := {x € Glord(z) < 2"71'}. It’s obvious to see H is
actually a proper subgroup of G. For any g € G,h € H, (ghg™ )¢ = g?h?g=¢. Then
ord(ghg™) < 271 ghg™' € H. Thus H is normal in G, H < G. Then consider
groups H and G/H whose orders are strictly smaller than 2". The same process
above will imply a sequence H' < H < H” < G .And we can refine it to obtain the
following series:

1:H0§]H2§]§Hn—1ﬁHn:G

such that H;1/H; is cyclic with order 2. Especially there is a normal subgroup H
of G such that |G/H| = 2.

Since |Gal(K’/Q)| = 2™, there is a normal subgroup H C Gal(K'/Q) with
|Gal(K’/Q)/H| = 2 . Then consider Q C K" C K’ where [K’ : K'"M] = 2 and
[K'H . Q] is a power of 2 as well. Moreover since H is normal, K'# /Q is finite Galois,
continuing this process we will finally obtain a sequence of fields Q = K| C Kj C
.. C K], = K', with [K[,, : K] = 2. The Theorem implies K C K’ C C. O

Now let us apply the Theorem [3.35 and Remark to four problems in ancient
Greece about compass and straightedge construction.

(1). The first one is about squaring a circle. We want to construct a square
whose area is equal to the area of a given circle. This problem is equivalent to say
whether /7 is constructible or not. The answer is negative since 7 is not algebraic
over Q, and thus /7 is not algebraic over Q as well.

(2). The second one is about doubling the cube. Given a cube, we want
to construct a new cube with twice the volume. This problem is equivalent to say
whether /2 is constructible or not. Obviously [Q(+/2) : Q] = 3 # 2". Hence the
answer is negative.

(3). The third problem is about trisecting an arbitrary angle, which means
given an angle 6, we want to construct /3. An angle 6 is called constructible if
there are two lines whose intersection angle is #. This definition is equivalent to that
(cos 6, sin ) is constructible. Since sin @ is a solution of the equation X?+cos?0—1 =
0, the definition is also equivalent to that cos@ is constructible.

Since cos ) = 4 cos® g — 3COS§, we should consider the polynomial 4X3 — 3X — a.
6/3 is constructible iff the polynomial 4X? —3X — cos 6 is not irreducible in Q(cos ).
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We give two examples here.

If a = cos60° = %, then 8X? — 6X — 1 is irreducible. If it’s reducible, then it has
a root § in Q with (p,q) = 1. Hence 8p* — 6pg® = ¢, then plq, q|p. = g =1lor —1.
But 8—6—1+#0,—8+6—1% 0. Thus 20° is not constructible.

The argument above is standard to prove aX? + bX? + ¢ is irreducible in Q[X]
where a,b, c € Z. It’s reducible iff it has a root § € Q with (p,q) = 1, then g|a, p|c.

If a = cos45° = ?, then 4X3 — 3X — ‘/75 is not irreducible since —*/75 is a root
of it in Q(+/2), which means 45° can be trisected.

Exercise 3.37. Prove 0 = 54° is constructible.

(4). The final problem (regular n-gon) is about constructing a regular polygon
with n-sides, which is equivalent to construct 6, = %’r or cosf,.

Lemma 3.38. A reqular n-gon is constructible iff 0,, is constructible iff cos#, € C

iff [Q(&,) = Q] is a power of 2.

Proof. &, = cos®, +isinf,, &1 = cosb, —isinb, = &, + &1 = 2cos0, € Q(&,).
And moreover &, is a root of X? —2cos,X — 1.

Q&)
degree=1 or 2
Q(cosb,)
Q
then [Q(cosf,) : Q] is a power of 2 iff [Q(&,) : Q] is a power of 2. According to the
Remark [3.36] and Theorem [3.35] we see this lemma is true. O

A Fermat number has the form F,, = 1 4 22". If it’s a prime as well, then it’s
called a Fermat prime.

Example 3.39. Fy = 3, F; =5, Fy = 17, F3 = 257, Fy = 65537 are all Fermat
primes. But F5 = 641 x 6700417 and Fg = 274177 x 67280421310721 are not primes.
In fact until now we have not discovered any new Fermat primes different from
F;,0 <1 < 4. Therefore there is a conjecture that F;,0 <1 < 4 are the only Fermat
primes.

Now the following theorem solves the problem of regular n-gon.
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Theorem 3.40. A regular n-gon is constructible iff n has a prime decomposition
n = 2"p1..ps
such that k,s > 0, p;’s are Fermat primes.

Proof. The Lemma tells us 6, is constructible iff [Q(&,) : Q] is a power of 2.
Assume n = 2Fp'...p"s, where p; > 3, then

d(n) = ¢(2)p(p1)..0(p) = 2" (p1 — L)p o(ps — Lp™ !

See the Fact (2) for the definition of ¢. According to the Theorem
Gal(Q(£,)/Q) = (Z/nZ)* then [Q(&) : Q] = [Gal(Q(&,)/Q)| = ¢(n). It’s a power

of 2iff r; =1 and p; — 1 is a power of 2. From the following Lemma [3.41], we know
p; will be a Fermat prime. =

Lemma 3.41. A prime number p > 3 is a Fermat prime iff p — 1 is a power of 2.

Proof. Since F,, = 1+ 22", the part of = is clear. We then assume p — 1 is a power
of 2. Suppose p — 1 = 2" = 22'™ where 2  m, then p = (22°)™ + 1. Since for any
odd number r» > 1, a”" 4+ 1 has the following decomposition

a"+1=1—(—a) =[1-(=a)]1+ (—a)+ ..+ (—a)"]

Hence if m > 1, then p will not be a prime. Therefore m =1 and p = 22" 41 =F,.
]

3.4 Solvability of Algebraic Equations

In this section we assume all fields have characteristic 0. From the Lemma 2.22] we
know all algebraic field extensions of characteristic 0 is separable. Hence here the
property of being Galois is equivalent to be normal.

Definition 3.42. A finite field extension K/F is called radical if there exist uy, .., u, €
K,mq,...,m, € Nt such that
(1) K = F(uy, ..., uy).
(2) ui™ € F, u;" € F(uy,...,ui—1) for all 2 <i <n.
This 1s equivalent to say there is a sequence of fields

F C F(uy) C F(uy,ug) C ... C Fuq,...,u,) = K

such that F(uy,...,u;—1) € F(uy,...,u;) is a simple radical extension with u;" €
F(’U,l, ...,ui,l).
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Note a radical extension doesn’t need to be Galois and the polynomial of X™i—a &
F(uq, ...,u;—1)[X] is not necessarily to be irreducible.

Remark 3.43.

(1) Q C F. Let &, be a primitive n-th root of unity 1. Then the simple algebraic
extension F'(&,)/F is radical.

(2) Let ube aroot of X™—a € F[X]. Then F(u)/F isradical. But it’s not necessaril
to be normal. For example Q C Q(+/2) is not normal. But from the Remark
we see the normal closure N of F(u)/F is generated by all roots of the minimal
polynomial P of u over F which divides X™ — a hence contained in F'(u,,,) which
is the splitting field of X™ — a over F. Since all roots of P have the form u&F, and
(u€k )™ = a € F, we see the normal closure N/F is radical.

(3) More generally, if K/F is radical but not normal, let K’ be the normal closure
hence Galois closure of it, then K’/F will be radical.

Proof. Assume K = F(uy,...,u,) with u;" € F(uj,...,u;—1) and P; is the mini-
mal polynomial of u; over F' where 1 < ¢ < n. Then K’ is generated by all
roots of P; over F. Define G := Gal(K'/F), |G| = [K' : F] < 0. If 7 € G,
then 7(K) = F(7(u1), ..., 7(u,)) is radical over F as well since 7(u;)™ = 7(u;") €
T(F(uy,...;u;—q)) = F(r(uy), ..., 7(u;—1)). If v; is a root of P;, then there will be an

F-morphism F(u;) — F,u; — v; by the Lemma , which can be extended to be
K' — F according to the Proposition m But since K’ is normal, K’ — F' is
actually K’ — K’ by the Theorem [2.18 In a summary we have

K' = K({r(u)|r € G,1 < i <n}) = [[ K(r(w), ... (un))

The following Fact (3) implies K’/ F is radical. O

Fact 3.44.

(1) There are field extensions FF C E C K. If K/F is radical, then K/E is radical
but E/F may not be radical.

(2) Still consider F C EC K. If E/F and K/E are radical, then K/F is radical.
(3) If E/F and E'/F are radical, then E - E'/F is radical.

These are similar to the property of being normal. See the Corollary [2.19]

Proof. (1). It’s obvious since F(uq,..,u,) = E(uq,...,u,) = K.
(2). E=F(u1,...tn), K = E(tuni1, ooy ) = K = F(Ug, ooy Up, Upi1y oeny Upp)-
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E-F
E E
radica /dical
F

F CF(u) C...C F(up,.yup) =E,u; € E=wu € E-F E'CE'(u) C ... C
E'(uy,...;u,) = E - E and u;" € F(uy,...,u;i—1) C E'(u1,...,u;—1). Wesee E - E'/E'
is radical. The part of (2) implies FE - E'/F is radical. O

Definition 3.45. A group G is solvable if G has a series of subgroups
such that G; < Gy and Gi1/G; is abelian.

Example 3.46. Permutation groups Sz and S4 are solvable but Aj is a non-commutative
simple group hence not solvable. Note a group is called simple if it has no proper
normal subgroups except {e}.

There are some basic facts about solvable groups in the following which we’ll not
prove.

Fact 3.47.

(1) If G is solvable, then for any subgroup H < G, H is solvable as well. If moreover
H is normal, then G/H is also solvable.

(2) Conversely if H <G such that H and G/H are normal, then G is normal as well.

(3) If G has a composition series, in particular G is finite, then G is solvable iff the
composition factors of G are cyclic of prime order. Especially if G is finite solvable,
then G will have a normal subgroup of prime index.

The proof of second part of (3) is clear since that means there will be a maximal
normal subgroup H < G with G/H abelian. Then G/H is a simple abelian group.
Hence G/H must be a cyclic group of prime order.

Now we can state the connection between radical extensions and solvable groups.

Proposition 3.48. If K/F is a finite Galois radical extension, then Gal(K/F) is
solvable.
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Proof. K = F(uy,...,u,) with u;" € F(uy,...,u;—1). We prove this proposition by
induction on n. If n =1, K = F(uy),uf™ € F. We see K C F(uy,&y,) and it’s
enough to prove Gal(F'(uy,&n,)/F) is solvable by the Fact (1). Now we consider

the following diagram:

F(uh éml)

F(&m,)

F

Since all roots of unity 1 are different, F'(&,,,,)/F is normal hence Galois. From
Galois Correspondence, we see Gal(F (&, )/F) < Gal(F(u1,&m,)/F) is normal. The
Fact (2) implies to prove Gal(F(u1,&n,)/F) is solvable, it’s enough to prove

Gal(F (6, )/ ) and Gal(F i )/ Fln) = Gl )/ F)/ Gl F 6/ F)
| Emr)

B(
) F
Q

There will be an injection Gal(F(&,,,)/F) — Gal(Q(&n,)/Q) = (Z/miZ)* by
7 = 7|Q(&n,). Then Gal(F(&,,)/F) is abelian hence solvable. On the other hand
consider an element 7 € Gal(F(u1,&m,)/F(&m,)). T is determined by its value on w;.
All roots of X™ — uf"™ are ui&F, with 0 < k < m; — 1. Hence 7(u;) = v &k, for
some 0 < k <my — 1. And since 7(&n,) = &m,, We see Gal(F(u1,&m,)/F(&n,)) is an
abelian group thus solvable. This proves Gal(F(u1, &y, )/F) is solvable. Therefore
Gal(K/F) is solvable.

Q(Em,

K = F(uy)(ug, ooy ) ——— K(Emy)

|
F(u) —————
F
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That Gal(F (u1,&m,)/F) is solvable is proved above. Since K/F is finite Galois,
then K(&,,)/F = K - F(&,,)/F is finite Galois as well according to the Corollary
2.19] Therefore K (&, )/F (u1,&n, ) is finite Galois and radical. By the assumption on
n—1 we see Gal(K (&, )/ F(u1,&m,)) is solvable. And because F'(uy,&,,)/F is Galois,
then Gal(F(u1,&m,)/F) < Gal(K (&) /F(u1,&m,)) is normal = Gal(K (&,,)/F) is
solvable according to the Fact (2). Gal(K/F) is a subgroup of Gal(K (&, )/F)
hence solvable as well. ]

The concept of solvable groups actually comes from the solvability of algebraic
equations.

Definition 3.49. Assume f(X) € F[X]| and Split(f) is the splitting field of f(X)
over F'. We say f(X) is solvable by radicals if f(X) splits in some radical exten-
sion K/F i.e. Split(f) C K.

Remark 3.50. Let K = F(uy,...,u,) with v € F(uy,...,u;—1) and all roots of
f(X) are in K. Then every root of f(X) can be expressed as an iteration of the form

F + %/— such as d + mi/c—l— /b + ™/a where a,b,c,d € F.

In the following the Galois group Gal(Split(f)/F) is denoted by Galy where
f(X) € F[X]. Then the next theorem reveals the relation between the solvabil-
ity by radicals of polynomials and the solvability of groups.

Theorem 3.51. Let f(X) € F[X]|. Then f(X) is solvable by radicals iff Galy is
solvable.

Proof of “=7. The proof of the part = is clear. Actually there is a series of fields
F C Split(f) € K C K', where K/F is radical and K’ is the Galois closure of K.
Then Galy = Gal(K'/F)/Gal(K’/Split(f)). The Remark (3) implies K'/F is
radical. Then the Proposition tells us Gal(K'/F) is solvable. Since Split(f)/F
is Galois, Gal(K'/Split(f)) < Gal(K'/F) is normal. Then from the Fact (1),
Galy is solvable. O

To prove the part of <= we need a lemma.

Lemma 3.52. Let K/F be a Galois extension with [K : F] = p prime. Assume F
contains &, the primitive p-th root of unity 1. Then K/F is a simple radical extension
i.e. Ju € K such that u? € F and F(u) = K.

Proof. In the following we construct such u € K satisfying 7(u) = & L, where
Gal(K/F) = (1) is a cyclic group of order p. Then 7(u) # u = u ¢ F and 7(uP) =
(& 'u)? =uP = uP € F. Since [K : F|is prime and [K : F(u)]-[F(u) : F] = [K : F],
we will have K = F(u).

36



Let v € K fixed, u = >0~ & 7'(v). Then
T(u) = Zr T (v Zgl 1
=&t Z T () =& Z &' (v)
» pa
=& 25 v) + &, (v)

= 5;1 Z £;Ti(v) +o
i—1
=&t (8)
]

Theorem 3.53. Let K/F be a finite Galois extension such that Gal(K/F) is solv-
able. Then K is contained in a radical extension of F.

Proof. We prove by induction on [K:F ] = n If n = 2, since any equation X2 +

aX +b = 0 has roots =2+% >4 and —=5 @>—4 then K/F is itself radical. We assume
this theorem is true for [K F]<n- 1 where n > 2. Then consider the following
diagram:

K —— K(g) — L
degree=n degr% -
radical F<€p)

Since Gal(K/F) is finite Galois, according to the Fact (3), it has a normal
subgroup H of index prime p. We fix such prime p and add the primitive p-th root
to K. Then since F' C K, [K(&,) : K] < [F(§,) : F]. But [K(&,) : K]-[K : F] =
(&) : F(E)] - [F(&) : Fl = [K(&) : Fl, we conelude [K(§,) : F{g&,)] < n

Case 1. If [K(&,) : F(&)] < n, then by assumption K (&,) is contained in a field
L such that L/F(¢,) is radical. From the Fact [3.44] L/ F is radical.

Case 2. [K(&,) : F(&,)] =n. We assume FE = K (§,)" where H < Gal(K/F) with
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|Gal(K/F)/H| = p.

K(G) —— 1
degree<n /dical
E
degree=p
F(&)

Since H is normal, E/F(,) is finite Galois with degree p. The Lemma implies
E/F(&,) is a simple radical extension. [K(§,) : E] < n, by assumption K (&,)/E will
be contained in a radical extension L/E. Then L/F(§,) is radical. Hence L/F is
radical. ]

This theorem proves the part of <= of the Theorem [3.51] Since Split(f)/F is
finite Galois with Gal; = Gal(Split(f)/F’) solvable, Split(f) is contained in a radical
extension K/F.

In general polynomials of degree > 5 are not solvable by radicals. In the following
we focus on algebraic equations of degree 3 and 4 and compute their Galois groups.

Lemma 3.54. Assume f(X) € Q[X]| of degree n is separable. Then Galy is isomor-
phic to a subgroup of S,,. Moreover if f(X) is irreducible, then this subgroup of S, is
transitive and n| |Galy|. A subgroup H of S, is called transitive if Vi, j € {1,...,n},
do € H such that o(i) = j.

Proof. Suppose {uq,...,u,} are distinct roots of f(X) and S, is the permutation
group of them. Then since Split(f) = Q(uy, ..., u,), we can define Galy — S, 7 —
Tl{uy, ...,u,}. 7 is determined by its values on u;. Hence this map is injective.

Next we assume f(X) is irreducible. Then the Lemmal[2.7], Proposition and
that Split(f)/Q is normal imply Gal; is transitive. The minimal polynomial of u;
over Q is just f(X), hence [Q(uy) : Q] = n. We see n| |Gal¢| = [Split(f) : QJ. O

In the next section we will construct polynomials whose Galois groups are S,,.
Here we recall some facts about permutation groups and details can be found in
[Bos18] Section 5.3 and 5.4.

Fact 3.55.

(1) Every element of S,, can be written as the composition of transpositions (i, j).
There will be a group morphism sign : S,, — Z/27Z such that for 7 € S,,, if in a de-
composition of transpositions, there are evenly many transpositions, then sign(7) = 0
otherwise sign(7) = 1. ker sign is denoted by A, and it’s a normal subgroup of index
2.
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(2) Every permutation group S, is solvable for n < 4, but not solvable if n > 5. To
prove this we need some computations, but the proof is omitted.

[Sy, Sn] = A, forn > 2
{1} forn=2,3

[An, Apl =<V, forn=4

A, forn>5

where [G, G] denotes the commutator subgroup of G and V} is the Klein four-group
{id, (12)(34), (13)(24), (14)(23)} C S
(3) We then focus on describing subgroups of S3 and Sy. In fact subgroups of S3 have
been studied in Example [3.20l We deal with S; here. In the following is the list of
classes of subgroups of Sy.

o Sy — Sy {id, (12)}, with order = 2, not transitive.
e {id,(12)(34)} with order = 2, not transitive.

o Cy = ((1234)) = {id, (1234), (13)(24), (1432)} cyclic and transitive subgroup bu
not normal.

o V, = {id, (12)(34), (13)(24), (14)(23)} with order = 4, transitive and normal.
e ((12),(34)) = Z/27 x Z/27Z not transitive.
e D, = ((1234),(13)) with order = 8, transitive.
o Aj, 53— S, (not transitive).
e A, transitive with order = 12.
and there is a subnormal series:
{id} C {id, (12)(34)} CV, C A, C S,
we see Sy is solvable.

Now let’s consider algebraic equations of degree 3 and 4. Given a polynomial
f(X) = X"+ ap, 1 X"+ ...+ ap € F[X], it factors as f(X) = [[/,(X — ;) where
x; € F. We set

1<)
and let D(f) = A(f)%. Then D(f) is called the discriminant of the polynomial
f(X). Note D(f) # 0iff Vi # j,z; # x; iff f(X) is separable.
We derive some special formulas for D(f) of algebraic equations f(X) = 0 of
degree < 4 now and it’s not necessary to assume f to be irreducible or separable.
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Example 3.56.
(1) We start with a quadratic polynomial f(X) € F[X], say f(X) = X?+ aX +b.

Since
T + To = —Q
1T = b
we see D(f) = (21 — x2)* = (z1 + 22)* — dx129 = a® — 4b.

(2) Let f(X) = X®+aX?+bX +c. Replacing X by X — ¢, f(X) has a simpler form
X3+ pX + q. Using Vieta theorem

T1+ Tg+ X3 = 0
T1To + T1T3 + ToxXz = P

T122T3 = ¢

we have D(f) = —4p® — 274>

(3) A monic polynomial X* + a3 X3 + aa X? + a1 X + ag has the form f(X) = X* +
aX?+bX +c when replacing X by X —%. Then D(f) = 144ab*c—128a*c* —4a’b*+
16a*c — 27b* + 256¢3.

(4) You can find more general formulas for D(f) of polynomials of degree > 5 in
[Bos18] Section 4.4.

Next we assume f(X) € F[X] is irreducible of degree n = A(f) # 0. Let 0 € S,,,
a(A(f)) = (—1)e @ A(f), where it’s enough to consider o = (ij), j =4 + k, k > 0.
Then o(A(f)) = (=1)*TA(f) = —A(f). Therefore o € A, iff a(A(f)) = A(f).
And o(D(f)) = D(f). Since Split(f)/F is Galois and Galy C S,,, we see D(f) € F.
In a summary we have proved:

Lemma 3.57. Suppose f(X) € F[X] is irreducible of degree n. Then Galy C A,, iff
A(f) e Fiff vyD(f) € F.

Assume F' = Q.
o If deg(f) =2, then Galy = Z/27Z.

o If deg(f) = 3, then Galy < S;. But 3| |Galy|. We see |Galf| =3 or 6 = Galy =
A3 or Sg and Galf = A3 iff A(f) S @
Example 3.58.

(1) f(X) = X3—3X + 1. Then f is irreducible in Q[X] since 1 and —1 are not its
roots. D(f) =—4-(=3)*—27 =281, A(f) € Q. Then Gal; = As.

(2) f(X)=X?+3X+1. Then D(f) = —5 x 3°. Hence Galy = Ss.
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Remark 3.59. Now let’s consider an irreducible quartic polynomial f(X) = X* +
bX3 + cX? + dX + e € Q[X], whose roots are x1, T2, T3, 14. Then we consider:

O = T1To + T3Ty
B = w123 + X214
Y = 2124 + T2T3

since x;’s are all different, «, 3,~ are all different as well. Sy can act on {«, 3,7}.
For 0 € Sy, 0(a) = Zo1)To(2) + To(3)To). The stabilizer of a, 3 or v is a Sylow
2-group. For example Stab(f) =< (1234),(13) >= D4. And we could see Vj is
contained in all of stabilizers of «, 8 and . Hence Vj fixes all of o, 8, . In fact V; =
Stab(a)NStab(8)NStab(y). Hence the Galois group Gal(Q(z1, z2, 23, 24)/Q(av, 5, 7))
is just Galy N Vj.

Let g(X) = (X —a)(X — 8)(X —~) which is called the cubic resolvent of f(X).
Since every element o of S; which is the permutation group of {z1,xs, 3,24} just
permutes {«, 5,7}, 0(g) = g. Then V1 € Galy, 7(g) = g = all coefficients of ¢ are in
Q. g(X) € Q[X], whose splitting field is Q(«, 8,7). And Q(a, 8,7)/Q is Galois =
Galy NV, 9 Galy is normal, then Gal, = Galy/Galy N V. There is a decomposition:

Q(mlv X2,T3, .I'4)

GalfﬂV4
Q(ev, ,7) (9)
Galy/GalNVy

Q

Lemma 3.60. If f(X) = X* +bX? + cX? 4+ dX + e, then g(X) = X3 — cX? +
(bd — 4e)X — b?e + 4ce — d* and D(f) = D(g). In particular if b = 0, f(X) =
Xt 4+ eX?+dX +e, g(X) = X? — cX? — 4eX + 4dce — d*.

The computation is omitted and we state the following important theorem.

Theorem 3.61. Let M = Q(«, 5,7), K = Q(x1, x9, x3,24), m = [M : Q).
(1) If m =1, then Galy = V.

(2) If m = 2, then Galy = Cy or Dy. Moreover Galy = Dy iff Galy N'Vy acts
transitively on {xq, 2, x3, x4} iff f(X) is irreducible in M[X].

(3) If m = 3, then Galy = Aj.
(4) If m = 6, then Galy = S,.
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Proof. See Fact |3 - ) for subgroups of S.

(1). m=1= Gal, =1= Galy NV, =V, = Galy C V. But {id, (12)(34)} is
not transitive = Gal; = Vj.

(2). m =2 = |Galy| =2 = |Gal;/Galy N V,| = 2. If |Gal; N V4| = 1, then
|Galy| = 2. But there is no such transitive subgroup of order 2. If |Gal; NV,| = 2,
then |Galf| = 4 = Galy = Cy. If |Galy N Vy| = 4, then |Galy| = 8 = Galy = D,.
Galy = D, iff Galy NV, =V, iff Gal; NV} acts transitively on {z1, z2, x5, 24}, since
no proper subgroup of Vy satisfy it. And this is also equivalent to say |GalyNVy| =4
or [K : M]=4.

If f(X) is not irreducible in M[X], then for a root x of f(X), the degree of its
minimal polynomial over M is strictly smaller than 4 and it should not be 3 since
314. It must be 2. Then there will be two roots of f(X) in M(x) say x1,xs. From

5 =x3+ —I4
Ill = 2w+ 14

we see x3,x4 € M(x) as well, which means [K : M] = 2. Hence when m = 2,
Galy = Dy iff [K : M| =4 iff f(X) is irreducible in M[X].
(3). If m = 3, |Galy/Galy NV, = 3, 3| |Galg|. Then Gal; should be A4 or Sy.
But |S4/Vy| = 6. Then Galy must be Ay.
(4). If m = 6, |Gal;/Gal; N V4| = 6 then Gal; should be Sj.
[

Example 3.62.

(1) f(X)=X*+4X?+2 € Q[X]. It’s irreducible by Eisenstein’s criterion. Its cubic
resolvent is g(X) = X% —4X? —8X +32 = (X — 4)(X? —8). Then m = [Q(+/2) :
Q=2 And f(X) = (X?4+2)2 -2 = (X?2+2+V2)(X?+2—/2). According to
the Theorem (2), Galy = C.

(2) f(X)=X*+2X +z € Q[X]. It’s irreducible by Eisenstein’s criterion. Its cubic
resolvent is g(X) = X3 —8X — 4. {1,—1,2,—-2,4,—4} are all not its roots. Hence

g(X) is irreducible in Q[X]. D(g) = —4(—8)3 —27(—4)? = 1616, \/D(g) ¢ Q. Then
Gal, = S5 according to the Lemma m = |S3] = 6. Therefore Gal; = Sy.

Exercise 3.63. Determine Galois groups of the following polynomials over Q:
(a) X3 —2X +3.

(b) X*+8X +12.

(¢) X*+3X +3.

Exercise 3.64. Find the Galois group of X% — 3X? + 1 over Q.

Exercise 3.65. Let f(X) € Q[X] be an irreducible polynomial of degree 5. List all
(up to isomorphism) subgroups of S5 which can be the Galois group of f.
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3.5 Polynomials with Galois Group S,, over Q

It’s well known that polynomials of degree < 4 are solvable by radicals but polyno-
mials of degree > 5 are not solvable by radicals in general. From the Fact (2)
we know any permutation group S, is solvable for n < 4, but not solvable for n > 5.
Hence according to the Theorem [3.51] if we construct a polynomial whose Galois
group is S, for n > 5, then we have proved the second part of the first sentence in
this paragraph and this is our task in this section. We first find some criterion for
subgroups of S,, to become S,, actually.

Lemma 3.66. Let G < S, be a transitive subgroup of S,. If G contains a 2-cycle
and an (n — 1)-cycle T, then G = S,,.
Proof. A d-cycle has the form (iy...i4). We can assume 7 = (23...n), (ij) € G where
j # 1. Since for any ¢ € S, 0+ (ij) -0~ = (0(i)o(j)), from the assumption that
G is transitive, there will exist 0 € G such that o(i) = 1, and then o - (ij) - 07! =
(16(5)) € G, o(j) # 1. Therefore we can suppose (la) € G where a € {2,...,n}.

Let 7 acts on (la). 7 (la) - 7% = (7¥(1)7%(a)) = (17%(a)). This implies
(12), (13), ..., (1n) € G. And (i1)(j1)(i1) = (ij) € G. We conclude G = S,.. O

This lemma motivates us to find a polynomial whose Galois group contains a 2-
cycle and an (n — 1)-cycle. And it can be constructed locally due to the following
lemma

Lemma 3.67. Let f(X) € Z[X] be monic. We fiz a prime p and consider f € F,[X]
where deg(f) = deg(f) = n. If f is separable, then Galy < Galy < 5, where
Galy = Gal(Split(f)/Q) and Gal; = Gal(Split(f)/F,).

Before giving a proof here, we sketch the method, which is called Kronecker’s
analysis. If f(X) € Q[X] of degree n has n’s different roots {uy,...,u,}, from the
Lemma we know Galy C S,. Let E = Split(f). We define the following

polynomial

9(X) = [ X = WeyTs + ... + o Tn)] € E(Th, ..., T,)[X]

O’GSn

over the rational field E(73,...,7,,) and the linear factors are all different. Then
Vo € Sy, o(g) = g. Especially Vr € Galy, 7(9) = ¢g. Hence all coefficients of
g € ETy,...,T,,X] are in Q. Hence g € Q[T1,...,T,][X]. Assume g = g;...gx, where
gi € Q(T1, ..., T,,)[X] is irreducible. If X — (ug1)Th + ... + Uo(n)T})|gs, then

VT € Galfa X - (u‘ra(l)TI + ...+ uTa(n)Tn)|T(gz) =g

3This lemma comes from [Lan02] P274, or you can find details in [Jac85] Section 4.16.
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which means HTeGalf (X — (Ure)T1 + ...+ Urom)Th)] |gi- But HTGGalf (X — (UreyTh +
e + Uro(yT3,)] is invariant under 7/ € Galy. Hence it’s in Q(77, ..., 7,,)[X]. Then

H [X - (UTO'(l)Tl + ...+ uTU(n)T’I’L)] =G
T€Galy

This argument implies that g = g;...g, represents the coset decomposition of Galy in
S,. And we can thus assume ¢; = HTeGalf (X = (uryTh + .. + Ur)Th))

Moreover we consider another action of S,, on g;. For any v € Sy, v(¢:(T1, ..., T, X)) =
i(Tyay, s Tyny, X). If ¥(gi) = gi, then

X = (uoyTy1) + - + to(m)Tym)
=X — (Umfl(l)Tl, ceey Uo-,yflTu)
=X — (UroyT1 + ... + Urg(n)Ty), for some 7 € Galy

1 1

then 0y~ = 70 = v = 07'77'o. On the other hand for any o~ '70 where 7 € Galy,
po(o~tro)™ = ur~lo. Hence the stabilizer of g; in S, is exactly 0 'Galyo, which
is denoted by Stab(g;). Especially Stab(g;) = Galy.

Proof of Lemma 3.67. 0 # D(f) = D(f) mod p. Hence D(f) # 0 and f(X) has n’s
different roots. Then we assume {uy,...,u,} and {vy,...,v,} are different roots of f
and f in C and F, respectively. Consider a coefficient h(uy, ..., u,) of g(X) defined
above. It’s invariant under S,. Therefore h(zy,...,x,) is a symmetric polynomial
which can be expressed as a polynomial A/(sy, ..., s,) where

(S(] = 1,
S1=21+ ...+,
So = X1y + T1T3 + ... + Tp_1Tp

(Sn = X1...Tp,

Since f(X) € Z[X] is monic, then all s; € Z. Hence g(X) € Z[11, ..., T,][X]. Accord-
ing to the Gauss’ lemma, we see g; € Z[T, ..., T,,][X]. Suppose g = g(X) mod p €
F,(Ti,...,T,)[X]. Then g = gi...G-

Define

J(X) =[] X = oyT1 + .. + Vo Tn)] € Fp(T1, .., T)[X]

O’ESn

we have ¢'(X) = g. And g = §1...v = ¢...g;, where ¢.’s are irreducible in
F,(T1,...,T,)[X] and represent the coset decomposition of Gals in S,. Moreover

44



we may assume

g = H (X = (oryTh + o + v 1)) | G0
T€Galy

We then prove Galy = Stab(g}) C Stab(g;) = 0~ 'Galyo. We suppose there exists
some v € S, such that v(g]) = g7 but v(g;) # ¢;- Since g; is irreducible, v(g;) is
irreducible as well. And 7v(g;)|v(g) = g. Then v(g;) = g;,1 7é j. But ’y(gl) = v(q),
we see v(g;) = g;, and g} = v(g})|7(g:) = g;, which means g,?|¢’ and ¢’ has multiple
roots. A contradiction! Hence aGalfa C Galy.

We know given a k-cycle A = (ay...ax), ,u)\pfl = (u(ay)...p(ag)). From the
Theorem , we know Galy is cyclic. Decompose the generator of Galras a disjoint
product of n;-cycles. We see after a rearrangement of {vy,...,v,}, Gal; C Gal;. O

Remark 3.68. In the proof above if we know the Theorem 4.38 in [Jac85], which says
under the assumption of Lemmal[3.67] there will exist a ring morphism Z[uy, ..., u,] —
Split( f f) C FF,, inducing a bicjection between the set of roots of f and the set of roots
of f € F,[X], then the proof may be simpler. Under such ring morphism, we will
have g; = HreGalf [X — (Ur(l)Tl + ...+ UT(n)Tn)].

The Lemma is useful because it allows us to add a 2-cycle and an (n—1)-cycle
to Galy, using the method of mod p reduction. To do this, it urges us studying Galy
further.

Theorem 3.69 (Dedekind). Under the assumption of Lemma if
f=Fifr fi € Fp[X]

where f;’s are irreducible and monic. Assume d; = deg(f;). Then Galy is cyclic of
order lem(dy, dy, ..., d,), containing a product of disjoint cycles of the form oy...0,,
where ; = (n1...ng,) is a d;-cycle.

Proof. Any finite field extension of F, has the form F,m

f splits completely over Fym & f; splits completely over Fym for all i
& f; divides XP" — X for all i
& d; = deg(f;) divides m
< lem(dy, ..., d,) divides m

Choosing a root u of f;, F,(u) = F,4; € Fpm iff d;|m, according to the first paragraph
of the Section . We see F,m is the splitting field of f iff m = lem(dy, ..., d,). Then
from the Theorem Gal; = Gal(Fym/F,) = Z/mZ where m = lem(dy, ..., d,),
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generated by the Frob : z — a”. Especially Galy, = 7Z/d;Z is generated by Frob and
fi has roots

2 d;—1

Pl u

uiauzv )

where u; is root of f;, since Split(f;) = Fp(u;) = Fyq;. Then Frob € Galy, is a d;-cycle.
Then f has roots:

pdl—l pd2—1 d;—1 1

pir=
UL, ey W) U, uh T, 0 ey Uy ooy UP

Therefore we can conclude the generator Frob is a product of disjoint cycles of the
form oy...0,, where 0; = (ny...ng,) is a d;-cycle. O

Now we start to construct a polynomial whose Galois group is S,,.

Theorem 3.70. There is an irreducible polynomial of degree n over Q such that its
Galois group is S, for alln > 1.

Proof. If n = 1 or 2, this theorem can be checked directly. If n = 3, then X? — 2 has
Galois group 53, see Example |3.20| or Lemma [3.57. Therefore we assume n > 4.
We first construct a monic polynomial f;of degree n satisfying

e f1 mod 2 € Fy[X] decomposes as X - h; where h; € Fo[X] is irreducible of degree

n — 1.

We explain why f; always exist. Assume F,» is a finite field over F,. From the

Corollary we know . is cyclic. Hence we suppose Fn. is generated by a.

Then Fym = [F,(a). And the minimal polynomial of « over F), is irreducible of degree

m. And then from the Theorem [3.69) we know Galf, contains an (n — 1)-cycle.
Next we construct a monic polynomial fy of degree n satisfying

e f, = fo mod 3 € F3[X] decomposes as R - hi.
e f, is separable.
e deg(h)) =n — 2,deg(hly) = 2. h} is irreducible and

When n is odd, b} is irreducible
When n is even, b} = X - h}, where h} is an irreducible of degree n — 3

Ry and hi always exist. If n is odd, then (2,n —2) =1, F32 NF3n-2 = F3. And if n is
even, then (2,n —3) = 1, Fs2 NF3.—s = F3. We know F,m /F, is separable. Let A} is
the minimal polynomial of o, where « is the generator of FJ,_,. h} and hj is defined
similarly. From the first paragraph of Section we know A} and R/, will not have
a same root.
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According to the Theorem above, we know Galg, contains an element of the
form:
When n is odd, ((n — 2)-cycle) - (2-cycle) = o109
When n is even, ((n — 3)-cycle) - (2-cycle) = 717,

)2 = 057? = 09 and (1172)"* = 757° = 7. Then Galj, contains a

Then (o109
2-cycle.
Finally we construct a monic irreducible polynomial f(X) € Z[X] of degree n as

follows:
e fi = f mod 2.
e fo, = f mod 3.

We choose a polynomial f3 € Z[X] of degree n — 1 such that f(X) =3f; —2fs+6f3
is irreducible by the Eisenstein’s criterion of 5. Assume 3f; — 2fo = X" + f4, where
fi=ap, 1 X"+ ...+ ap. Since 6 =1 mod 5, we could find b; such that 5|a; + 6b;.
If 25]ag 4 6by, we replace the by by by + 5, and then 25 1 ag + 6by + 30.

From the Lemma Galy,, Galf, < Galy. Then Galy contains a 2-cycle and
an (n — 1)-cycle. Hence Galy = S, from the Lemma [3.66] O

Example 3.71. Assume n = 4.
(1) In Fy[X], X3+ X +1 is irreducible since 0 and 1 are not its roots. Then we choose
fi=X(X3+X+1)€zZ[X].
(2) In F3[X], let hYy = X* + X + 2, which is irreducible since there is no roots in Fj.
Let by = X — 1, then b = X(X —1). fo = X(X —1)(X?+ X +2). Then

3fi—2fs = (3X" +3X* +3X) — (2X* +2X* — 4X)

= X'+ X?+7X

Choose f3 = —X?2 —2X +5= f=3f —2fo+6f3 = X* —5X? —5X + 30. We can
also use the Theorem to prove Galy = Sy.

When n is big enough, this construction will be much more complicated. But if
n is prime, then it may be much more simpler thanks to the following lemma and
theorem.

Lemma 3.72. Assume G < S, where p is a prime. If G contains a 2-cycle and a
p-cycle, then G = S,,.

Proof. See the Corollary 2.10 for a proof in https://kconrad.math.uconn.edu/
blurbs/grouptheory/genset.pdf O]
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Theorem 3.73. Let f be an irreducible polynomial of degree p over Q with exactly
two non-real roots in C. Then Galy = .5,.

Proof. If a + bi is a root of f where b # 0, then a — bi is a root as well, since
fla+bi) = f(a+ bi). We assume the conjugation function is ¢. Then ¢ € Galy and
is 2-cycle.

To prove Galy contains a p-cycle, we need the Cauchy’s theorem.
Theorem 3.74 (Cuachy). For a finite group G, if p| |G|, then G has an element of
order p.

Since f is irreducible, if u is a root of f, then p = [Q(u) : Q] | [Split(f) : Q] =

|Galy|. If 7 = 7 ... 7, is an element in Gal; of order p, where 7;’s are disjoint
di-cycles. Then 77 =1 = d;|p = d; = 1 or p, which means 7 is a p-cycle. Then from
the lemma above Galy = S),. O

Example 3.75. Assume p=5. f(X) = X° —5X + 2 € Q[X] is irreducible because
consider f(X +3) = (X 4+ 3)° = 5(X +3) + 2, 53> — 15 + 2 = 230 but 5* { 230.
(X)) =>5X*—5 =5X2+1)(X —1)(X+1). f(-1)=6>0,f(1) =-2<0.
Then from the graph of f(X), we conclude it has three real roots. Hence it has two
non-real roots. From the Theorem [3.73 Gal; = S5. Since Ss is not solvable, then f
is not solvable by radicals.

Exercise 3.76. Show that Q¢, contains a unique subfield £ which is of degree 3
over Q . Show that F is not a radical extension over Q.

Exercise 3.77. Let F, be the algebraic closure of F, and let G = Gal(F,/F,).
Frob € G is the Frobenius x +— 2P. Find an element of G which is not a power of
Frob, i.e. find o € G such that o # Frob" for any n € Z.

Note: you may need to refer to the infinite Galois theory.

3.6 Infinite Galois Theory

In the previous sections, we only consider finite Galois extensions. In this section
we consider infinite Galois extension, which is a Galois extension of infinite degree.
And there is a similar theorem compared with Theorem [3.9] To deal with this
infinite theory, we need to equip Gal(K/F') with a topology. And here we talk about
topological groups first.

Definition 3.78. A group G equipped with a topology is a topological group if
G xG—G,(g9,h) = gh
LG =G g—g!

are continuous maps.
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Example 3.79. (R, +), (R*, x).
Fact 3.80. Given an element a € G, the left multiplication map is defined to be

La:G(MGXG%G,gH(a,g)Ha-g

L, is continuous and has the inverse L,-:. Hence it’s a homeomorphism. Dually
there is a concept of right multiplication map R, which is a homeomorphism as well.

Note: if X is a topological space, then open subsets on X x X are those the union
of the form U x V', where U,V are open in X. In fact the open basis on X x X is
the class of finitely intersections of the form U x V where U,V is open in X. But
N:(U; x Vi) = (NU;) x (N;V;), hence U x V' form a basis of X x X.

Corollary 3.81. If N is a basis of open neighborhoods of 1 € G, then aN is a basis
open neighborhood of a € G.

Proof. From the Fact [3.80, L, is a homeomorphism, hence sending open subsets to
open subsets. O

From this corollary, to know a topology of a topological group G, it’s enough to
know its basis of open neighborhoods around 1 € G.

Lemma 3.82. G is a topological groups and H < G is a subgroup of G equipped
with the topology of subspaces. Then

(1) H is a topological space as well.

(2) The closure H of H is a subgroup of G. Moreover if H is normal, then H is
normal as well.

(3) G is Hausdorff iff {1} is closed

Proof. (1). It’s trivial.

(2). h € H iff for any open subset U containing h, UNH # (). Assume hy, hy € H.
We need to prove h = hihy € H,h;y' € H. Given an open subset U containing h,
since - : G — @ is continuous, -~1(U) is open in G x G and (hy,hy) € -H(U),
then there are open subsets Vi, Vs such that h; € V; and Vi x Vo C -71(U). Then
Vi -V, C U. But since h; € H, then V; N H # (. If we assume ¢; € V; N H, then
G192 € Vi - Vo N H, which means U N H # (. Hence h € H.

Given any open subset W containing h;'. Since ¢ : G — G is continuous,
hy € .71 (W) is open. Then :~*(W) N H # 0. If we assume g € .~'(W) N H, then
(g)=g 't €WNH#(. Hence h;* € H.

If moreover we assume H is normal, then Vg € G,gHg™' = H. Then H =
gHg™ ' < gHg ! where gHg " is closed. Hence H C gHg "' for all g € G. Replace
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gby g7'. Then H C go'Hg C g-'(gHg ")g = H. Therefore H = gHg™! for all
g € G. Then H is normal.

(3). If G is Hausdorff, then every one point set is closed especially {1} closed.
Conversely, if {1} is closed, we consider the following function:

T:GXG@)GXG—VG,(QJL)H(97h_1)'_>9h_1

Since {1} is closed, W = {1}* = G — {1} is open. Given any two different elements
g,h € G, 1 # gh™" € W. Then (g,h) € 77'(W) is an open subset in G x G.
Hence there exist open subsets U,V C G such that (g,h) € U x V C 771(W). And
obviously U N'V = (), otherwise (a,a) € 77'(W) =1 € W. A contradiction! O

Lemma 3.83. Assume G is a topological group and H < G, then
(1) If H is open then H is closed.

(2) If H is closed of finite index, then H is open.

(3) If G is compact, then H is open iff H is closed of finite index.

Proof. (1). Let S be the set of representatives of cosets of H in G. Then there is a
coset decomposition
G = H o-H

where o - H is open since H is open and L, is a homeomorphism. But G — H =
[1,zia0 - H is open as well. Hence H is also closed.

(2). Since H is of finite index, |S| < co. Then G — H is a finite union of closed
subsets, hence closed as well = H is open.

(3). We only need to prove if H is open then it’s closed of finite index, under
the assumption that G is compact. Still considering the coset decomposition above
G = [I,eq0 - H, which is an open covering. Since G is compact, then S is a finite
set. [

Given a Galois extension K/F', now we equip Gal(K/F') with a topology.
Definition 3.84. Define

N :={Gal(K/FE)|F C EC K and E/F is a finite Galois extension.}

to be the basis of open neighborhoods of 1 € Gal(K/F'). The topology on Gal(K/F)
induced by N is called Krull topology.

Remark 3.85.
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(1) Given any two finite Galois extensions E/F, E'/F such that F, E' C K, Gal(K/E-
E') = Gal(K/E) N Gal(K/E"), where E - E'/F is finite Galois as well. Hence N is
actually a basis of open neighborhoods of id.

(3) If K/F is finite Galois, then the Krull topology is discrete, since Gal(K/K) =
{id} € N. Then {id} is open and any one point set is open.

(3) With the Krull topology, Gal(K/F) is actually a topological group.

Proof. To prove this we need the following Lemma |3.86] Note that the proof of this
lemme is independent from the fact that Gal(K/F) is a topological group and in the
proof we only need the definition of Krull topology. Actually Krull topology can also
be defined as the weakest topology of those ¢’s.

To prove the composition function o : Gal(K/F) x Gal(K/F) — Gal(K/F) is
continuous, it’s enough to prove

w:Gal(K/F) x Gal(K/F) — Gal(E/F), (r,0) — To0|E

is continuous where E/F' is finite Galois and Gal(F/F) has discrete topology. If
we assume A = 7 o o|E is fixed, from the definition of Krull topology, we know
7 - Gal(K/E) and Gal(K/FE) - o is open around 7 and o respectively. But p(r -
Gal(K/E),Gal(K/E)-0) =T oc|E = \. Then u is continuous.

Similarly, to prove ¢ : Gal(K/F) — Gal(K/F), «(r) = 77! is continuous, we only
need to prove // : Gal(K/F) — Gal(E/F), /(1) = 77!|E is continuous. But consider
the open neighborhood 7 - Gal(K/FE) of 7, we see /(1 - Gal(K/E)) = 77'|E. Then //
is continuous. Therefore Gal(K/F') is a topological group with Krull topology. [

(4) If we define
N :={Gal(K/E)|F C E C K and E/F is a finite field extension.}

then this also defines the Krull topology.

Proof. Obviously, N' < N’. On the other hand for any finite field extension E/F
contained in K, since K/F is Galois= E/F is finite separable, then the normal
closure E/F is finite Galois according to Remark and Gal(K/E) C Gal(K/E).
Then N/ < N, which implies N/ and N’ induce the same topology. Or further we
consider H' < H < G, where H' is open and G is a topological group. Then from
the coset decomposition of H' in H, we conclude H is open as well. Then Gal(K/E)
is open in the topology induced by V. [

(5) If E/F is a field extension contained in K which is not necessarily finite, then
Gal(K/FE) is closed.
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Proof. In fact E is the composition of all finite field extensions contained in £. Hence

Gal(K/E)= N Gal(K/L)

L/F finite, LCE

But Gal(K/L) is open from (4) above, hence closed as well according to the Lemma

B.83 O

Lemma 3.86. For any finite Galois extension E/F contained in a Galois extension
K/F, the following map

¢ :Gal(K/F) — Gal(E/F), 7 — 1|E
1S continuous and surjective.

Proof. Since E/F is normal, from the Theorem we see this map ¢ is well
defined. And according to the Proposition and the fact that K/F is normal,
any may £ — E < F can be embedded into K — K and then ¢ is surjective.
Since F/F is finite Galois, Gal(F/F) is a finite set with discrete topology. Then
it’s enough to prove ker ¢ is open in Gal(K/E). 7 € ker ¢ iff 7|E = id iff 7 €
Gal(K/E) which is open by definition of Krull topology. In fact Krull topology is
the weakest topology induced by all such . ]

Then we could consider the map

v=]]¢: Gal(K/F) — 1T Gal(E/F)

E/F is finite Galois

which is an injective group homomorphism. If we assume ¢(7) = ¢(0), then given
u € K, F(u)/F is the simple extension of u over F' and E/F is the normal closure
of F(u)/F , hence finite Galois. Then 7|E = o|E, 7(u) = o(u) = 7 = 0. Then ¢ is
a group isomorphism to its image. To study im ¢ further, we introduce the concept
of inverse limits.

If {G;|i € I} is a family of groups where [ is a partially ordered set and there
are group homomorphisms

pij:Gj_>Gia Vi,je], ’LS]

the tnverse limit limG, is defined to be a group G with group homomorphisms

(—
pi : G — G; such that p;;op; = p;, Vi,j € I, © < j, satisfying the universal property
that if (H, f;) is another solution such that p;; f; = fi, ¢ < j, then there is a unique
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homomorphism ¢ : H — G such that p; o 0 = f;.

G Fo6 H

(10)

For simplicity such G is denoted by limG; as well and it’s unique up to isomorphism.
H

In the category of groups, the inverse limit has another explicit form
limG; = {(g:) € ng’ | pij(95) = 9}

Dually there is a concept of inductive limits with all arrows in the diagram (10)
reversed, which is denoted by limG;.
H

Example 3.87. Assume [ = N and maps G; = Z/p'Z — Z/p'Z = G;_y, © —
x mod p. Then

Ly = limZ/p’Z = {(z)i>1]7i1 = 2; mod pi—l}
— >
= {(a07a17 )|O S a; S p— 1}

={) apl0<a<p-1} (11)

>0

The equations are derived from the fact that every element of Z has the unique form
S ya;pt where 0 < a; < p—1. Z, is called the p-adic integers.

If we consider inverse limits in the category of topological groups, such group
limG; will have the subspace topology of [],.; Gs, hence being a topological group
—
as well. Especially there is a special type of inverse limits of topological groups.
Definition 3.88. An inverse limit of finite (discrete) topological groups is called a
profinite group.

Lemma 3.89. A profinite group is compact, Hausdorff and totally disconnected.

Proof. According to Tcychonoft’s theorem which states if topological spaces X;’s
are compat then [[. X; is compact as well, [[, G; is compact since G,’s are finite
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discrete hence compact. hmG C I, Gi. It’s enough to prove l1mG is closed. Given
(9)i ¢ hmGZ, then there wﬂl exist p;; such that p;;(g;) # ¢;. Deﬁne

U={g}x{g}x [] G
kg
which is open in [], G; since G;’s are discrete. Then (g;) € U, but U N limG; = 0,
—
which means [[, G; — limG; is open.
H

Given any two elements (g;); and (h;); in [[, G; such that (g;); # (hs);, then
there will exist some j, g; # h;. Define open subsets U; = {g;} x [[G; and V; =
i#]
(Gj - {g]}) X HGl Then (gz)z € Uj and (]’L1>Z c ‘/J but Uj N ‘/3 = @ Hence Hz Gz is
i#]
Hausdorff, and then limG; is Hausdorff as well.
(—

Recall that a space X is called totally disconnected if for every x € X the
component containing x is {z} itself, which is also equivalent to say any subspace
containing more than one element of X is not connected. We assume A is a subspace
of [ [, Gi containing at least two different elements (g;);, (h;);. U; and V; are defined
as before. Note U; UV; = [[,G; and U; NV; = (0. Then A is the disjoint union of
proper non-empty open subsets U; N A and V; N A of A, hence not connected, [

Given a Galois extension K/F, all finite Galois extensions F;/F contained in K
are indexed by the set 1. ¢ < jiff E; C E;. Then [ is a partially order set. Especially
I is directed which means Vi, 5 € I, dk € I such that ¢, 5 < k. Then there will exist
an inverse limit {iglGal(Ei/F) C I Gal(E;/F).

Theorem 3.90. Induced from the injection v : Gal(K/F) — [[, Gal(E;/F), there is
an isomorphism ' : Gal(K/F) = li;nGal(Ei/F) in the sense of topological groups.

Proof. We prove im ¢ is limGal(E;/F) first. im ¢ C imGal(E;/F) is obvious and we
— —
prove the converse. Given an element (7;); € limGal(E;/F), 7;|E; = 7 it E; C E;.
<_

For any element u € K, its simple extension F'(u) is contained in some E; such as its
normal closure. We define 7 : K — K,u — 7;(u ) If we E;NE;, since B, = E; - E;
is finite Galois as well from the Corollary 2.19] (2) and Proposition [2.27] (2), i, j < k:
7, = 1x|E; and 7; = 7|E;. Then 7;(u) = Tj(u) = 7p(u). 7 is well defined and
7|E; = 7;. This proves ¢/ : Gal(K/F) = {iinGal(E,- /F) is a group isomorphism.

We prove ¢/ is a homeomorphism as well. First ¢ is continuous and then ¢ is also
continuous. Next we prove ¢/ is open and it’s enough to prove /(Gal(K/E;)) is open.

/(Gal(K/E) = ({1} x ][ Gal(Ey/F)) NlimGal(E,/F)
E#E;

54



The right part of the equation above is open in limGal(E;/F'). Hence ¢/ is open. [
<—

Corollary 3.91. Gal(K/F) with Krull topology is a profinite group hence compact,
Hausdorff and totally disconnected.

There is a Galois correspondence for infinite Galois extensions as well.

Proposition 3.92. Let K/F be a Galois extension. Then:

(1) KGal(K/F) - F.

(2) If H < Gal(K/F), then Gal(K/K) is the closure of H.

Proof. (1). If z € KGK/F) i contained in some finite Galois extension E;/F,

since Gal(K/F) — Gal(E;/F),7 — 7|E; is surjective (Lemma [3.86]), we see z €
EGaI(Ei/F) = F

Z (2). At first from the Remark (5), Gal(K/K*) is closed containing H. Then

H C Gal(K/K*H). Conversely, assume ¢ ¢ H. Then there is an open subgroup
Gal(K/FE) where E/F is finite Galois such that o - Gal(K/E)N H = (). Consider the
following exact sequence

1 — Gal(K/E) — Gal(K/F) % Gal(E/F) — 1

We have p(o - Gal(K/E)) = ¢(o) ¢ ¢(H). ¢(H) is a subgroup of Gal(E/
Then the Galois correspondence for finite Galois extensions tells us ¢(o) ¢ ¢(H) =
Gal(E/E*H)). And there is some x € E¥H) such that o(o)(x) = (0|E)(z) #
But E¢H) = Ko N E. Hence o ¢ Gal(K/K" N E) D Gal(K/K*"). O

Theorem 3.93 (Galois Correspondence). Given a Galois extension K/F, there is
a one-to-one correspondence

{closed subgroups H of Gal(K/F)} <— {subfields E of K containing F'}
H+— K"
Gal(K/E)«+— FE (12)

o H is open iff K is finite over F.
o H is normal iff K% is Galois over F and

Gal(K* /F) = Gal(K/F)/Gal(K/K")

Proof. Step 1: The one-to-one correspondence is easily derived from the Proposition
2.92l
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Step 2: Since Gal(K/F) is compact, from the Lemma the subgroup H <
Gal(K/F) is open iff it’s closed of finite index. Now we only assume H is closed and
the corresponding subfield is K.

Since K/F is separable, K /F is separable a well. From the Theorem we
know [K# : F] = [Homp(K*, F)|. Suppose cosets of Gal(K/K®) = H in Gal(K/F)
are {H,H,»H,...}. We define a function:

O {H,7H,H,..} = Homp(K", F),7,H s 7;| K"
Obviously we know ¢ is well defined since H = Gal(K/K*H). If (r,H) = (1, H),
then 7;| K = 7;| K" and 7, - 7'j_1|KH = id, which means 7, - 7, € H = 7,H = 7;H.
Hence 1) is injective. Conversely given any o : K — F, which can be extended to be
o' K — K since K/F is normal. Then we see v is surjective. Therefore the index
of H is just [Homp(K#, F)|. This proves H is cloed of finie index iff [K* : F] < oco.

Step 3: The Step 3 of the proof of Theorem is also valid here. ]

Remark 3.94. Here we prove the theorem that Gal(F*/F) = Gal(F,/F)® in Re-
mark B.17

Proof. Assume G = Gal(F,/F). Since by definition G* = G/[G, G| for the profinite
ﬁ

group G, from the Theorem |3.93| above we only need to prove Gal(F,/F®) = [G, G|

which is the closure of the subgroup [G,G] generated by all commutators in G.

From Lemma [3.82] (2) [G,G] <G = [G,G] < G. Suppose L = FI%9. Then L/F
is Galois with Gal(L/F) = G /|G, G] abelian. Therefore L C F® = Gal(F,/F®) C

Gal(F,/L) = |G, ). ) B
On the other hand, Gal(F,/F®) <G with G/Gal(F,/F®) = Gal(F®/F) abelian,
and then [G, G] C Gal(F,/F®) = [G,G] C Gal(F,/F®) since Gal(F,/F®) is closed.
[

Example 3.95.

(1) Fix the prime p and assume &,» is the p™-th primitive root of unity 1. Let K :=
L>J1Q(£pn). Since K/Q is the union of finite Galois extensions Q(&,n)/Q, from the

Remark and Theorem K/Q is Galois such that
Gal(K/Q) = {iin(Z/p”Z)X =7, ={(ag,a,...)Jag #0, 0 < a; <p—1}

(2) F, is the finite field. From Theorem we know Gal(F,./F,) = Z/nZ. For any
algebraic field extension K/F, K is the union of all finite extensions E/F. Hence
F, = UF,». Then the absolute Galois group is

Gal(F,/F,) = limZ/nZ = Z
—
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Note F, is not the only infinite field extension between F, and F,. The following
tower defines a proper subfield of Fp.

F, CFp CF2 C ..

Exercise 3.96. Prove that every open subgroup of a profinite group contains an
open normal subgroup.
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4 Galois Cohomology and Kummer Theory

4.1 Norm and Trace

Definition 4.1. Given a finite extension K/F, for any a € K, we could define
Ni/r(a), Trg/p(a) € F as follows:

Ng/p(a) := det(mg) (13)
Trg, p(a) := trace(m,) (14)

where my, : K — K,z — « - x 1s an F'-linear map.

Fact 4.2.

(1) Ng/p(o) and Trg/p(a) are independent from the choice of basis.

Proof. The matrix A and B are the matrices of the map m,, corresponding with two
different bases. Then there is an inverse matrix T such that B = TAT~!. Then
Nk r(o) = det(B) = det(T)det(A)det(T) ™! = det(A).

Given any two n x n matrices U = (u;;) and V = (v;;). Then trace(UV) =
DDk Uik Uki = 9y ok Vit = trace(VU). Then Trg p(a) = trace(B) = trace(TAT ') =
trace(TT—'A) = trace(A). O

(2) Ng/r(—) is multiplicative, which means N r(a - 8) = Ng/p(a) - Ng/p(8). Espe-
cially if a € F, Ng/r(a) = a1 and N/p(a - a) = a®FINg /().

(3) Trx,/p(—) is additive, which means Trx/p(a + 8) = Trg/p(o) + Trg p(8). And if
a € F, Trg p(aa) = aTrg/p(a). Note Trg/p(a) = [K : Fla.

(4) Trg/p : K — F is an F-linear map. Hence it’s surjective or 0.

Lemma 4.3. If there is a tower F' C E C K where K/E is finite, then Ng/p(o) =
Ng/r(@)EF and Try p(a) = [K @ E] - Trg/r(a) for all a € E.

Proof. Assume {z1,...,2,} is a basis of E/F and {yi,...,ym} is a basis of K/E.
From Proposition [2.2| {x;y,} is a basis of K/F. If A € M, y,,(F') is the corresponding
matrix of m, on E/F, which means

xy xy

T2 T2
Q =A

Tn Tn
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Then

11 11
T2 T2l
i : A :
nY1 A Ty
a- | T1Y2 | = ) -] T1Y2
A

TnY2 TnY2

TnYm TnYm
Ng/p(a) = det(A)™ = Ng/p(a)E and Trg/p(a) = m - Trgp(a) = [K @ E] -
TI‘E/F(Oé) . D

Remark 4.4 (Transitivity). The Lemma above is a special case of following
formulas

NK/F = NE/F o NK/E (15)
TI‘K/F :TI"E/FOTI'K/E (16)
We will prove them later.

Lemma 4.5. Let K = F(«) be a simple extension of F' and P € F[X] is the minimal
polynomial of a over F. Assume P(X) = 2"+ a, 1 X" ' + ... + ag. Then

NK/F(O./> = (—1)”@0
TYK/F(Oé = —Qp-1

Proof. Choose {1,a,a?,...,a" '} as the basis. Then the matrix of m,, is

0 1
0 1
0 1
—Qp —ap ... —Qp—2 —Ap_—1
Hence the trace is —a,_; and the determinant is (—1)"*'(—ag) = (—1)"ao. O

Proposition 4.6. Let K/F be a finite field extension of [K : F| = qr wherer = [K :
F is the separable degree and q = [K : F|; is the inseparable degree. See Definition
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2.30. From Theorem[2.36 we assume Homp (K, F) = {01,...,0,}. Then we have the

following formulas

TI"K/F = ngl (17)

Nk, r(a H oila (18)

Furthermore if K/F is not separable for p = char(F) > 0, then q is a nontrivial
power of p, and we have Trg/p(a) = 0.

Proof. We assume

tr/r(a) = q Z oi(a
HK/F H o

and show that trgx/p = Trx/p, ng/r = Nk p. First suppose o € F. Then o;(a) = ov.
From Fact (2) and (3)

Trg/p(a) = [K : F]-a=q(ra) = ani = tri/r(a)

NK/F<OC> = OA[K F] = HO’Z = DK/F(Oé>

Now consider the special case of K = F(a). Let the minimal polynomial of o over
F be
Xn —|— an,lX"_l + I Qo

where n = ¢r. No matter char(F) is 0 or not, from Remark Remark
Lemma [2.7] and Theorem [2.36], the polynomial has factorization

r

[[(x = oi(a))”
i=1
in F[X]. Then from Lemma
Trg/p(a) = —a,—1 = ani(a) = trg/r(Q)

Nk/rp(or) = (=1)"ao = Haz'(a)q = ng/r()
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Now if a € K is arbitrary, consider the chain of fields ' C F(«a) C K. Then from
Lemma

Trg p(a) = [K : F(a)] - Trpa)r(o)
Nig/r(a) = (Npay e (a)) )
Consider the following surjective map
Homp(K, F) — Homp(F(a), F),0; = o3| F(c)

From the proof of Theorem for any F-map 7 : F(a) — F there are exactly
[Ks : F(a)s] many extensions o; : K — F' such that o;|F(a) = 7. Hence

tri/p(a) = [K : K] Zai(oz)

=[K:K] K, :Fla),] >  7(a)

T€Homp (F(a),F)

1
- [K : KS] [ (a)S]trF ( ) [F(Oé) A F(Ck)s]
K K (KL F0),] T (o)
[F(a ) F(a)]
= [K : F(a)|Trp (@) = Trgyp(a) (19)
and
nK/F(a):HU [KK]
= H 7 () K K F ()]
T€Homp (F(a),F)
nF(a)/F(a) [K:[}Iggg:};s(:;(s?h]
= NF(O[)/F(CY)[K:F(&)] = NK/F(a) (20)

O
We now use the Proposition to prove the transitive formulas in Remark [4.4]
Proof of Remark /.4. Assume there is a chain of finite extensions ¥ C F C K with
[E:Fl=q|E:Fls, [K:E|=q@|K:FE;
Suppose B B
Homp(E, F) = {o1,...,0.}, Homg(K, F) = {1, ..., 75}
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We extend o; to be o} : ' — F. Then we have
Homp (K, F) ={clor0 <i<r 0<j<s}

It follows from the Proposition [4.6] that

tre/r(a) = q1ge ZU;’TJ'(O‘)
=q Z (¢ Z 75(@))
=0 Y oler Y ()

= tI'E/F(tI'K/E(OZ)) (21)
There are similar equalities for ng/p. O

Corollary 4.7. Assume K/F is a finite extension. Then K/F is separable iff Tryp :
K — F is surjective iff Trg/p is non-zero.

Proof. That Trg,p is surjective iff Trg/p is non-zero is clear.

First we consider the case of char(F') = 0. Then K/F must be separable. Since
1 # 0, from the Lemma [3.7 we see it’s impossible for all o € K, Trg/p(a) =
>, 0i(a) =0, where the symbols come from the Proposition

Now we suppose char(F) = p > 0. Then from the Lemma 3.7 Trx (o) =
q¢> ;0i(a) =0 for all « € K iff ¢ = 0 in F' which means p|q. Since ¢ > 1, it’s enough
to prove p|q < ¢ > 1. The part of = is clear because ¢ > p > 1. We assume ¢ > 1
which means K/F is not separable. Since [K : K] is purely inseparable according
to Proposition , then ¢ = [K : K| = p™ where m > 1 from the Fact Hence
plg. O

Corollary 4.8. Let K/F be a finite Galois extension. Then Try p and Ng/r are
compatible with T € Gal(K/F') which means

Trg/r(o) = Trg/p(7(a)), Ng/rpa) = Ng/p(T(a))
Proof. It’s immediate from the Proposition [4.6] O
Example 4.9. For F,./F,, Nr,./r, and Trg_, /p, are surjective.

Proof. Any finite extension of finite fields is separable = Trg _, /5, is surjective.
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[F;n is a cyclic group and we suppose z is the generator. Then x has order ¢" —1.
Then from the formula of Proposition [4.6

NE, ./, () = H o(x)
oeGal((Fyn /Fy)
—goxl-g” g
— T —aeF; (22)
where Frob : u — u? is the generator of Gal((F,»/F,) = Z/nZ. a has order ¢ — 1
hence generating the cyclic group F;. Then since N]Fqn /F, 1s multiplicative, N]Fqn JF,
is surjective.

Remark 4.10. The Theorem of Hilbert 90 is that if K/F is a finite cyclic Galois
extension and o € Gal(K/F) is the generator then the following conditions are
equivalent

(2) There is some § € K* such that a = #

In the Example m we assume o = z¥ for some integer k. N, jr, (@) =
Nr,./r, (#)¥ = a¥ = 1. Then q— 1|k Let k = (¢q—1)r = a = 247" = (%)q = %@.
Exercise 4.11. Let F' = Q(§) where £ = & is the primitive 9-th root of unity 1 in
C. Compute Np/g(z and Trg)g(x) for the following x.

o v =¢2+¢0
er=¢(+ 4 ¢

4.2 Galois Cohomology

In this section we first sketch some motivations for group cohomology with partial
proofs omitted and all details can be found in [Rot09] Chapter 9. But this will not
affect reading since proofs of theorems concerning Galois cohomology are complete.
Assume R is a ring with unit 1 not necessarily being commutative. Given a short
exact sequence of left R-modules (If not specified, all modules are left modules.)

0—A—B—C—70

which is called an extension of A by C, another extension of A by C' is isomorphic
to it if there is a commutative diagram

0 s A > B C

0 s A s B

o

~

Q
o
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According to the five lemma, B — E is forced to be an isomorphism. In homological
algebra, the set of isomorphism classes of extensions of A by C is computed as
Ext},(C, A), where Extp is the derived functor of Homp. If we consider extensions
of groups or give a short exact sequence of groups

l— A H 260 —1

there are similar theorems. For simplicity we always assume A is an abelian group.
We explain why we make this assumption. For any h € H, h defines an inner
automorphism on H by x + hah™! for x € H. But A < H is a normal subgroup.
Hence the restriction of this inner automorphism on A is still an automorphism.
Then there is a map H — Inn(H) — Aut(A). This deduces the following diagram

1 1
G o o » Out(A)
, "
H —— Inn(H) —— Aut(A) (23)
A > Inn(A)
1 1

If A is abelian, then Inn(A) = id, Out(A) = Aut(A) and any element g € G defines
an automorphism of A such that a — hah™' where g = p(h).

Definition 4.12. For any group G, Z[G] is the free abelian group generated by the
underlying set of G which is called the group ring of G.

Z|G] = {an -glng € Z, ny’s are almost all zero}

geG
Z|G] is actually a ring whose multiplication is defined to be
(an ' 9)(th -h) = Zlk -k, where I, = anmh
geG hed kel ot

Fact 4.13.
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(1) The group ring Z|[G| is characterized by the universal property such that given
any ring R
Hompgings (Z[G], R) = Homgroups(G, R*)

The funtor Z[—] is left adjoint to the unit functor Rings — Groups, R — R*.

(2) An abelian group A is a Z|G]-module iff there is a ring morphism Z[G] — End(A)
iff there is a group morphism G — End(A)* = Aut(A). Such module structure is
trivial if G — Aut(A) is trivial. Therefore for any short exact sequence

0—A-SH 2 G -—1

A has a natural Z|G]-module structure. We say such sequence realizes (A, ) where
0:G — Aut(A).

The set of isomorphism classes of short exact sequences realizing (A, #) is denoted
by &(G, A) which can be computed by Group cohomology. In the short exact se-
quence above, since p is surjective, there will exist a lifting + : G — H such that
p ot =1dg where ¢ may not be a group morphism. We can define a function

f:GxG— H, (z,y) — u(z)e(y)e(zy)™"

Since p(u(z)e(y)e(zy) ™) = zy(zy) ™!, imf C A. Therefore we write f(z,y) as ¢(z) +
t(y) — t(zy). Such function is called a cocycle and it satisfies the following cocycle
identity

mf(y,z) - f(xy,z) +f($ayz) - f(:l?,y) =0

with the Z[G]-module structure 6 : G — Aut(A) such that z - a = «(z) + a — ¢(x).
Conversely given (A, 6) and a function f : G x G — A satisfying cocycle identity we
could construct a short exact sequence realizing (A, ) and f has the form f(z,y) =
t(x)+(y) —t(zy). Moreover f and f’ correspond with isomorphic sequences iff there
is a function h : G — A such that

f(@,y) — f(z,y) = oh(y) — h(zy) + h(z)

A function g : GXG — Ais called a coboundary if there is some function h : G — A
such that

g(x,y) = zh(y) — h(zy) + h(z)

Definition 4.14. For a Z|G]|-module A the set of cocycles and coboundaries are
denoted by Z*(G, A) and B*(G, A) respectively.

Remark 4.15. Z?(G, A) is an abelian group with addition pointwise and B?*(G, A)
is a subgroup of Z?(G, A).
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Proof. The cocyle condition of f+ f’ can be easily checked. We assume ¢ is cobound-
ary. Then

zg(y, z) — g(zy, 2) + g(x,yz) — g(z,y)
=x(yh(z) — h(yz) + h(y)) — (zyh(z) — h(zyz) + hzy))
+ (zh(yz) — h(zyz) + h(z)) — (zh(y) — h(zy) + h(z))
=0

Hence B?(G, A) C Z*(G, A). O

The second cohomology group is defined to be H?(G, A) = Z?(G, A)/ B*(G, A).
Then we will have &(G, A) = H?(G, A). This is the concrete interpretation of second
group cohomology. In general there is a complex

0 — CYG, A) L5 CY G, A) —> ... — C"(G, A) 25 C"(G,A) — ... (24)

where C"(G, A) = Map(G™, A) all maps from G" to A in the sense of sets and
G" =G X ... X G is the n’s products of GG. Moreover

dn(f)(flfl, ceey l’n+1) :Ilf(xg, ceey .I‘n_H)
+ Z<_1)lf($17 ey L4 15 ey xn+1)
i=1

+ (:1)”+1f(x1, ey Tp) (25)

Note G = {x} is the one point set and then C°(G,A) = A. Viewing A as
Map({*},A), we see d°(f,)(z) = 2fu(x) — fo(*) = wa — a. Then d°(a) : x — za — a.

Fact 4.16. d"od™ 1 =0
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Proof.
d"(d" () (@1, T

::L'ldn_l(f)(l'g,.. Tn+1 —|-Z dn 1 Z’l,...,l’il'i+1,...,l‘n+1)+(—1)n+1dn_1(f)(l'1,...

:(J}ll‘gf(l'g, ceey $n+1) —+ x4 Z(—l)i_lf(fﬁ% ey Liljg 1y eeey xn—&—l) + xl(—l)”f(xg, ceey l’n)>

i=2
+ ( - I1$2f($37 oo In+1) + f(xﬂzl‘:a, . $n+1 + Z $1l‘2, ey L1y eey $n+1)
—|— (-1)n+1f<.fl'1llf2, ceey LEn)) + (Z(-l)llﬂlf(.xg, couy SL'@'I'Z'+1, ceuy xn+1)
i=2
i—2
‘1‘2 ZZ Y s BT g1, o, Tiligs oy Tiag1)
j=1
+Z Z Z 1)j_1f(~-->l’i33i+1,--->1?j$j+1>-~-,$n+1)
=142
n—1
+ Z Y (o, )+ Y (=) (=1 f (s 231 i, ...
i=2
+ Z F(@1, ooy i1, o ) + (1) (=1)"f (21, ...,mn,l))
n—1
+ (( 1)n+1$1f($27 y L ) + ( 1)n+1 Z(_l) f(xb LiZit1, ,an)
=1

]

The n-th cohomology group is defined to be H"(G, A) = kerd" /imd"~!. Especially
H% =kerd’. Forac A

d’(a) =0« d°(f.)(r) =0,YVr € G
Szra=a, VreG
&Sac AY (26)
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Then H°(G,A) = A% :=={a € Alr-a = a, Yz € G}.
For n =1, f € kerd" iff d'(f)(x,y) =0 for all z,y € G.

zf(y) — fley) + f(z) =0 & flay) = f(z) + 2f(y)

Such map (1-cocyle) f: G — A is called a crossed homomorphism. Especially when
(A4,6) is trivial, f(zy) = f(x) + f(y).

There is also another definition of group cohomology using the concept of derived
functors, which is equivalent to that we talk about above. We consider the left exact
functor Homg)(Z, —) where Z has the trivial Z[G]-module structure. Then any
Z|G]-morphism f : Z — A is totally determined by a = f(1). But

[ € Homy(Z,A) & Ve e G, a=f(1)=f(z-1)=z-f(1)=z-a

Hence
HomZ[G} (Z, A) = AG

This motivates us to define the group cohomology as
Hn(G, A) = EXtTZL[G} (Z, A)

Dually there is a concept of group homology as well.
H,(G, A) = Torl6)(z, A)

In fact the two definitions of group cohomology are equivalent. Consider a special
free resolution of Z, which is called the bar resolution

On On— O
B, — S By - 7Z—0

where B, is the free Z[G]-module with basis the underlying set G". The single
generator of By is denoted by [ ] and B, with n > 1 has basis [zi|z3]...|z,] where
z; € G. Note z[x|za|...|x,] # [xa1|z2s)...|]22,]. Then we can describe 9, concretely.

Ops1([21]--[Tn1]) =21 ][22l |20 11]
+ Z(—l)z[$1||l’l$z+1||l‘n+ﬂ
i=1

+(=1)" ... |2

Especially if n = 0, dy([z]) = =[] — [ ] and €(] ]) = 1. Take the left exact functor
Homgz[G](—, A) to the bar resolution. We obtain the following complex

% o5 _ n
00— Homz[g}(Bo,A) 2 . —1> HomZ[G](BnaA) 8—>
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Since B, is a free Z[G]-module with basis described above
Homyq)(B,, A) = Map(G", A)
and such complex is equivalent to that we have defined before in equation (24).

Fact 4.17. Note that it’s tedious to prove the bar resolution is actually a free reso-
lution of Z. Of course the most tedious part is to check 9,,_19,, = 0 which is the same
as the Fact Hence in the following we just prove the complex (bar resolution)
has trivial homology groups.

Proof. We reduce the bar resolution to a complex of abelian groups and prove the
identity map of this complex is chain homotopic to the zero map. Note reducing
Z|G]-modules to abelian groups will not affect homology groups.

3_1:Z—>B0,1r—>[]
Sp : Bn = Buy, © - [x1].]x,] = (2|2 |2,

Then we see €os_1 = idg. (Opso+s—_1€)(z-[]) = o([x]) +5-1(1) =[] []+][] = z[].
Hence 8050 + S_1€ = idBo-

(Onsn + 8n10n—1)(x - [11]...[70])

—

=0, ([z|x1]..-|n]) + Sn-1 <x . (:Bl[;v2||3:n] + g (=) [z1].. |5 ] |20 + (—1)"[;1:1\...|:En_1])>

=1

:(m[:p1||a:n] + Z(—l)’[w||xl_1xz||xn] + (—1)"+1[:13|:171|...|xn_1])

n—1
n ([xx1|x2|...|:pn] + 5~ il i -] + (—1)"[$|x1|...|xn_1]>
i=1
=z[x1|...|2,]
Therefore 0,5, + $,-10,-1 = idp, . O

Now let’s talk about Galois cohomology which is just the group cohomology of
Galois group. The most important theorem in this section is Hilbert 90 that we have
introduced before in Remark [£.10l We now state it from the viewpoint of Galois
cohomology.

Theorem 4.18 (Hilbert 90). If (K/F) is a finite Galois extension, then

HY(Gal(K/F),K*) =0, (multiplicative form)
HY(Gal(K/F),K) =0, (additive form)
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Proof. Note there is a natural embedding G = Gal(K/F) < Aut(K). Then K is a
Z|G]-module. So is K*. We prove the multiplicative form first.

Let f: G — K* be a 1-cocycle, which means f(o7) = f(o) - (o f(7)). For any
T € G, f(r) # 0. From the Lemma , we see Y . f(7)7 is not all zero. Then
there is a element @ € K™ such that

therefore

=Bf(o)” (27)

Then Vo € G, f(o) = Bo(B)7!. Let x = 7. It follows that f(c) = o(x)z~. Then
f is a 1-coboundary.

Next we consider the additive form. Assume f : G — K is a 1-cocycle, which
means f(o7) = f(o) + of(r). If f is always zero, it’s obvious to see it’s a 1-
coboundary. We suppose there is some v € G such that f(v) # 0. Then the 8 defined
above is still non-zero. We choose another element b € K* with Trg,p(b) # 0. Such
element exists since K/F is Galois hence separable and from the Corollary 4.7 Trg/p
is non-zero.

Then consider the element ¢ = a +b. Let = Y . f(7)7. If pla+0b) =0
then p(b) = —p(a) # 0. Then we replace 8 by pu(b). If Trg/p(a 4+ b) = 0 then
Trg p(a) # 0. If p(a+b) # 0 and Trg,p(a 4 b) #, we replace 3 by u(a +b). The
analysis above implies there is some a € K*, p(a) # 0 and Trg/p(a) # 0. We let
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= (f(o7) = f(0)o7(a)

=B - fl0) Y or(a)

TG

=B — f(o)Trrr(a) (28)

Then f(o) = (8—0(8))Trk/r(a)~*. Suppose z = —ﬁ. f(o) = o(x) —z, which
means f is a 1-coboundary.
[

The Hilbert 90 in Remark is classical and next we apply the Hilbert 90 above
to obtain classical one. But before that let’s consider the 1-cocycle of cyclic group of
order n. Assume G is a cyclic group of order n and f : G — A is a 1-cocyle. Then
F(ey) = f(2) +2f(y). Bz =y =1 then f(1) = F(1) + f(1) = f(1) = 0. 5 =y,
then f(2?) = (1+2z)f(z). f(2*) = (1 + 2+ 2?)f(z). In general

fl@®) =1+ + .. +2")f(z)
If G = (z), then f is totally determined by its value on x and
0=f(1)=f@")=0+z+..+2"Nf(x)

Conversely assume a € A such that (1+2+...4+2"!):a=0. Then f : G — A, x — a
defines a 1-cocycle.

Theorem 4.19 (Hilbert 90). Let K/F be a finite cyclic Galois extension of dimen-
sion n. G = Gal(K/F) = (o).

(1) If « € K* with Ng/p(a) = 1, then there is some € K* such that oo = %
(2) If « € K with Trg/p(a) = 0, then there is some 5 € K such that o = o(f) — .

Proof. (1).We can prove this via the same process of (2) only replacing addition by
multiplication. But here we give a more intuitive proof.

We want to find 3 € K* such that o = % & B =ale(B). Assume L =

a~lo: K — K. Then it’s equivalent to find an eigenvector with eigenvalue 1. The
construction is the same as in Lemma [3.52] Lo...o L = L™ =id, since

LF(z)=alo(a™)..oc" (a)o"(x)

71



L"(z) = Ngp(a ™)z =x. Foranyz € K, B =a+ Lz + ..+ L" "o = LB = Lo +
L?x+..+L"r = 3. On the other hand 1+ L+...+L" ! = 1+a lo+..+a "o L
From the Lemma [3.7]it’s not always zero. Hence there exists some x € K™ such that

5 0. -
(2). 0="Trg/p(e) =3 () =>" 0 (a) =(1+0+ ..+ 0" )a. Then

fG—=K of=(1+o+.. .+ Ha

defines a 1-cocyle. Since H'(G, K) =0, f is a 1-coboundary as well and there is an

element 3 € K, f(o*) = o*(B) — B. Especially a = f(o) = o(B) — B.
UJ

Remark 4.20. There is an application of Hilbert 90. Let a, b € Q satisfying a®+b* =
1. Then 3 ¢,d € Q shch that

A —d*> —2cd
b) —
(a,b) (C2+d2’c2+d2>

Proof. Consider Q(i)/Q where i = —1. This is a finite cyclic Galois extension and
the generator of Galois group is the conjugate map. Since Ng(y/q(a+bi) = a®+b* = 1.
Then there is some ¢+ di € Q(z)* such that

c—di  (c—di)?

a—+bi = =
+ c+di c? + d?

]

There are two generalizations of Hilbert 90. What’s the higher Galois cohomology?
What’s the Galois cohomology for infinite Galois extensions? We will focus on the
two themes in the following.

First we still assume K/F' is a finite Galois extension and we want to compute
H"(Gal(K/F),K) and H"(Gal(K/F), K*) for higher n. But the two cases are
different.

Theorem 4.21. For a finite Galois extension K/F, H*(Gal(K/F),K) =0, Vn > 1.

To prove this we need more techniques. For arbitrary group G we consider its
subgroup H < G. Then Z[H] — Z[G|. Given a Z|G]-module A, the induced
module is defined to be Z[G] ®zm) A and the coinduced module is defined to be
Homys (Z[G), A). They are denoted by Ind§ A and Coind% A respectively.

For a ring R, a left module is denoted by rA and right module is denoted by Ag.
Then we have the following obvious fact.

Fact 4.22. Let R and S be rings. Then
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1) Given rAg and rB, Hompg(A, B) is a left S-module where (a)(sf) = (as)f.

2) Given rAg and Bg, Homg(A, B) is a right R-module where (fr)(a) = f(ra).

3) Given Ag and ¢Bgr, Hompg(A, B) is a left S-module where (sf)(a) = s(f(a)).

4) Given gA and gBg, Homg(A, B) is a right R-module where (a)(fr) = ((a)f)r.
Given a ring morphism R — S. Then any S-module A has a natural R-module

structure. For pSs and rA, Hompg(S, A) is a left S-module. Hence the coinduced

module Homy g (Z[G], A) is a left Z[G]-module as well.
Moreover there is an adjoint isomorphism for modules Ag,r Bg, Cs

Homg(A ®g B, C) = Homg(A, Homg (B, C))

And it’s also interesting to see for a group ring Z[G| on it left modules are equivalent
to right modules, since for any left module A we could define a - ¢ = g 'a, and then
it will have a right module structure.

(
(
(
(

Proposition 4.23 (Shapiro). Let G be a group and H < G is a subgroup. Assume
A is a Z|G]-module. Then

(1) H"(H, A) = H"(G, Homgyu (Z[G), A))
(2) H,(H, A) = H,(G, Z[G) ©on A)

Proof. There are two proofs. We give a proof in the sense of homological algebra
here.
(1). Given a free resolution of trivial Z|G]-module Z (such as bar resolution)

— P —F —7Z—0
take the functor Homyg)(—, Homgy) (Z[G], A)) to it. Then
HOmz[G]<Pn, HOl’nz[H] (Z[G], A)) -t HOmz[H}(Pn ®Z[G} Z[G], A)

Next we should prove the restriction of P, on Z[H] also forms a free resolution of
the trivial Z[H]-module Z. It’s not difficult. From the coset decomposition of H in
G, we see Z[G] is a free Z[H]-module. Then it’s obvious that every free Z|G]-module
is a free Z[H]-module as well. Hence

Extyq)(Z, Homgm (Z[G], A)) = Exty) (Z, A)
(2). It’s similar to the proof of (1).
P, ®ziq) (ZIG] @zpm A) = P, @z A

Then
Tor” N7, Z|G) @z A) = Tor2H(Z, A)
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Remark 4.24. We can also prove H"(H, A) = H"(G, Homgy(Z[G], A)) directly
but it’s much more complicated. We construct a map

@ H"(G, Homgy) (Z[G], A)) — H"(H, A)
For any n-cycle f : G™ — Homgy)(Z[G], A),

o(f) : H* — G" -1 Homgy (Z[G), A) = A

where 7(u) = u(1). There are many things should be checked. ¢(f) is an n-cycle.
If f is an n-coboundary then ¢(f) is an n-coboundary as well. This proves ¢ is
well defined. Then you should prove ¢ is an isomorphism. To prove this you should
construct its inverse and prove it’s well defined. Note the inverse is difficult to
construct.

Exercise 4.25. Using the Remark to prove the case of n = 1. Prove ¢ is well
defined and construct its inverse.

Theorem 4.26 (Normal Basis). Let K/F be a finite Galois extension. Then there
is a nomal basis over K/F i.e. an element o € K* such that {7(«)|T € Gal(K/F)
form a basis of K/F.

Proof. See [Lan02] Chapter VI Section 13 or https://en.wikipedia.iwiki.eu.
org/wiki/Normal_basis. O]

Corollary 4.27. Assume K/F is a finite Galois extension. Then there is an iso-
morphism of Z|G]-modules where G = Gal(K/F)

(K,+) = Homgy(Z[G], F)
Note F is a trivial Z|G|-module and Z = Z[{1}].

Proof. Assume {G = {7, ...,7,}. From the Normal Baiss Theorem there is an ele-
ment « € K* such that {r;(«)|r; € G} form a basis of K/F. Since Z|[G] is the free
abelian group with basis the underlying set of G, Homy(Z[G], F') = F™ is an F-space
of dimension n. We define

Ur, 2 ZIG) = F, ury (1) =, un, (1) =0, if i#j
Then u.,,’s form a basis of the F-vector space Homy(Z[G], F). The left Z[G]-module
structure on it is that (7 - u,)(7;) = u,(7; - 7). Define the F-linear isomorphism

Ti(a) — u -1

To prove it’s an isomorphism of Z[G]-modules, it’s enough to prove 7 - (7;(a0)) —
7 - w1, which is equivalent to say ug,)-1 = 7 -u.1. But up,)-1(r;) = 1 iff

7
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T = (r7;)7 1 iff T; = 7'[1

~1
T =T, .

Next we prove 7 respects the product of scalar a € F' and that’s why such map
above defines a Z|G]-module isomorphism.

T iff yr =77 and (7 u) () = w7y - 7) = 1iff

7 (ami(@)) = 7(a)T7: () = aT7()

T(aus,) (1) = aur (7)) = a(7 - ur,)(75)

O
Proof of Theorem 4.21.
H"(G,K) = H"(G,Homg(Z|G], F')), (Corollary [4.27))
~ H"({1}, F), (Proposition
= Exty(Z, F)
=0, for n > 1, since Z is free
O

Remark 4.28. In general H*(Gal(K/F), K*) # 0. For any field F' the Brauer
group of it is defined to be H*(Gal(Fip/F), F.S,) where Fyp is the separable closure
of F. The Brauer group is denoted by Br(F'). There is another interpretation of
Brauer groups.

A central simple algebra (CSA) over F' is a finite-dimensional associative F-
algebra A with center F' having no non-trivial two-sided ideals. And any CSA over
F' is isomorphic to some matrix ring M, (D) where D is a division F-algebra with
center F. And we can define an equivalence relation on CSAs over F. Given any
two CSAs, A = M,(S) and B = M,,(T), we say A and B are similar or Brauer
equivalent if division rings S = T. Then there is a bijection

Br(F') «— the set of equivalence classes of CSAs over F’

Now we suppose F' =R and K = C. Then K is the separable closure of F'. We want
to prove H%(Gal(C/R),C*) # 0, which is equivalent to find a nontrivial CSA over
R. A trivial one is M3(R) whose center actaully consists of

r 0
0 r
where r € R. A nontrivial CSA over R is the Hamilton quaternions H, which is

defined to be
ReRid Ry b RE
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where

H is itself a division ring which means H = M;(H). A theorem of Frobenius states
that the only finite dimensional division algebras over R are R, C and H. But C is
not central. Hence in Br(R) there are only two elements. Then Br(R) = Z/27Z

Finally we consider Galois cohomology for infinite extensions, which is also called
continuous cohomology. In the following we always assume G is a profinite group
and let A be a discrete abelian group.

Definition 4.29. A discrete Z[G]-module is a discrete abelian group A with the
action
GxA—A (ga)—~g-g-a

continuous, which is equivalent to that for any fized a € A its stabilizer in G is open.

Example 4.30. Assume K/F is a Galois extension not necessarily finite. Then
Gal(K/F) acts continuously on K and K*. For 7 € Gal(K/F) and u € K, 7(u) = u
iff 7 € Gal(K/F(u)). Since F(u)/F is a finite field extension, from the Remark
(4), Gal(K/F(u)) is open.

To define continuous cohomology, we define a new complex first.

0 — C2(GLA) 5 Clopy(GLA) — o — Ol (GLA) 25 CL(G, A) — .
(30)
where C7,, (G, A) = Mapr,,,(G", A) consists of continuous maps from G™ to A and

d" is defined as before. Since A is discrete, continuous maps from G" to A are
locally constant. The n-th continuous cohomology is defined to be H (G, A) =
kerd" /imd".

Proposition 4.31. Assume G = limG; is a profinite group where I is a directed set
H

and A = limA; where A;’s are discrete G;-modules. Then
H

Cgmt(Gﬂ A) = hmcn(Gla Az)
—

Proof. There is an obvious G-module structure on A. For (¢;); € G and a € A,
there is some j € I such that a; € A; which is the preimage of a. Then define
(gi)i - @ = gja;. More precisely it’s the image of g;a; in A. It’s easy to prove it’s well
defined since I is a directed set.

Since G;’s and A;’s are discrete C? .(G;, A;) = C™"(G;, A;). For any i < j,
fig + GY — G}, fi + Ai = Aj then g5 © C™(Gi, A;) — C™(Gj, Aj) is defined by

composition. And for p; : imG} — G, pl : A; — limA;, there will also exist maps
— —
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g : C"(Gi, A;) — C2 L (imG;, limA;) defined by composition. Note inverse limits
— —

commute with inverse limits. Therefore we don’t distinguish lim(G7) and (limG;)".
— —

cont

th”(Gl,Al) """""""""""" BRI IRTIRTITS s On
%

— —

(31)

Cn(ij Aj)

The 6, is induced by the universal property of inductive limits. Moreover 6,,’s
are actually a morphism between chains and the commutativity also comes from the
universal property of inductive limits. We now prove 6,, is an isomorphism.

Note given an element h € limC™(G;, A;) there exists h; € C™"(G;, A;) such that

4)
h = pi(h;). 0,(h) is defined to be ¢;(h;). These information can be obtained from
the diagram directly.
Given an element u € limC™ (G}, A;) such that p;(u;) = u, 0,(u) = qi(u;) = 0.

—)
For w;p; : imG} — G} — A, since G} has only finitely many elements, there will
H

exist j > 7 such that u;p; = fJ’-iul-pi :imG} — A, is zero.
—

limG?} 0
—

Assume
Ey = {x € Gj|lug(x) # 0}

for k > j. Thenif j < k <K, fir (Erp) C E. If some Ej is empty, then u, = 0 which
means u = p(ug) = 0 and then 6, is injective. We assume Ej, are all non-empty. To
deduce a contradiction we need the following lemma

Lemma 4.32. The inverse limit of non-empty finite sets is non-empty where the
index set I 1s directed.
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If the lemma above is true, then the inverse system {FEy|k > j} has non-empty
inverse limit. Say (zx)r € limFE). It can be extended to be an element of limG?.
— —

For any ¢ € I, there is some k € I, 71,7 < k. Hence the value in the position ¢ is
determined be all k. But this will deduce an contradiction, because u,py = f,;jO =0.
Hence some Ej must be empty. We prove Lemma |4.32 after proving 6, is surjective.

Given a continuous map w : {iinG? — 1i_n>1AZ» = A, since A is discrete, w™(a)

is open in limG7}. But limG7 is profinite hence compact, w has only finitely many
— —

values, say{ay,...,a,}. Note w™'(a) is closed as well. Hence w™!(a) is compact.

Since every open subset of [[; G} has an open neighborhood [[;cs Ui X [[;.5 G}

where U; is open in G and S is a finite set. Every w™'(a) is an intersection of

finite unions of such open neighborhoods with limG}'. Assume k is larger than any
—

element in S for all {ai,...,a,}. Then if we assume there are two elements u,v in
HmG? satistying pi(u) = pr(v) = pi(u) = pi(v) = fikpr(u) for any i € S. Then u,v
—

belong to the same [ ;g Ui x [[,..¢ G7 hence to the same w™"(a). In G, pp(w™"(a;))
where 1 <[ < m are disjoint with each other. Therefore there will be a factorization
of w

limG —— A

—

lpkwj T

Pyt GZ’ e Ak/

T
T i

n
k/
But there are only finitely many elements in G}', w’ factors as G} — Ay — A.

Then w” : G}, — G} — Ay belongs to C" (G, Ay) whose image under gy is just w.
Hence 6, is surjective. ]

Proof of Lemma 4.32. Assume {f;; : X; — X;|i < j} is an inverse system of finite
sets. Then we only need to prove S = N;<, R, is non-empty where Rj, = {(z;); €
I Xilfjx(xr) = x;}. Equip finite set X; with discrete topology =[], X; is compact
by Tychonoff’s theorem. Since the set T' = {(z;,2x) € X; x Xi|fix(ze) = 2;} is
closed and projection [, X; = X, x X is continuous, R, is closed. Hence we only
need to prove the intersection of finitely many R is non-empty. Choose k' large
enough. z; = fiw(zx) and x, = fiw(zg). Other z;’s are arbitrary. Then we see
such finite intersection is non-empty.

]
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Theorem 4.33. Under the assumption of Proposition [4{.51],
H? (G, A) =ZlimH"(G;, A;)
H

Proof. Tt’s a standard exercise in homological algebra that the n-th homology functor
H™: Ch.(R) — Ab commutes with inductive limits when the index set [ is directed.
It’s not difficult just tedious and you should check many things. We leave as an
exercise. [

Remark 4.34. If K/F is a Galois extension not necessarily finite and I is the
index set such that F;/F is finite Galois contained in K, then from Theorem
Gal(K/F) = 1limGal(F;/F) and K = limF;. Then for n > 1

— —

H! (Gal(K/F),K) = limH"(Gal(E;/F),E;) =0

and
Hclont(Gal(K/F), K*) = linHl(Gal(Ei/F), EX)=0

4.3 Kummer Theory

In this section, the field F' is special and it should contain a primitive n-th root of
unity 1 with n fixed. Then F will contain all n-th roots of unity 1. Moreover we
assume the polynomial X" —1 has n’s different roots. We talk about Kummer theory
in such special field. Actually there is also a Kummer theory for fields not satisfying
this condition. But that’s much more complicated and we don’t consider it.

Note if F' has characteristic zero, we have been familiar with it in the Section
since Q C F. But if char(F) = p > 0, there will be some requirements on n. p
must not divide n, p t n. And since all roots of X™ — 1 form a group, from Lemma
we see such group will be cyclic and the primitive n-th root exist. The group is
denoted by

ftn := {n-th roots of unity 1} C F

and we require p, C F.

Lemma 4.35. Let a € F* and m is the order of a in the multiplicative quotient
group F*/(F*)". Then every irreducible factor of X™ —a € F|X] has the form

X™—=b

for some b € F.
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Proof. Assume « is a root of P(X) = X" —a in F. It suffices to prove the minimal
polynomial ) of o over F' has the form X™ — b.

Step 1. We first prove Q| X™ —b, which is equivalent to say o™ € F. By definition
of m, a™ € (F*)"™ and there exist some b € F* such that a = b". Since " = a,
a" =b" = (a™/b)" = 1. Then o™ /b € p, C F. Hence o™ € F*.

Step 2. Now we only need to prove deg(Q) = m.

n—1
P=Xx"—a=[[(X-a &) =Q=]]X-ag)
=0 i€S
where S C {0, ...,n—1} and |S| = deg(Q). Expand Q = a?9Q)¢k ¢ [* = (@) ¢
F* where k = ), _¢i. Then

qe9(@) — (an>deg(Q) _ (adeg(Q))n € (F )"
hence m|deg(Q) = m = deg(Q). -

Corollary 4.36. Under the assumption of Lemmal[{.35, [F(c) : F] = m where o is
a root of X" — a.

Proposition 4.37. Under the assumption of Lemma[{.33], if « is a root of X™ — a
then F(a)/F is a cyclic Galois extension of degree m.

Proof. Having degree m has been proved above. Since roots of X™ — a are {a€’|i =
0,1...,n — 1} hence all different and the minimal polynomial of « divides X" — a
then having different roots, F'(a)/F is separable by Lemma[2.29] And since y,, C F,
F(«) is the splitting field of X™ —a. Then F(«)/F is normal by Theorem Next

we define a map

¢ :Gal(F(a)/F) = pin, 0+ ?

(%‘”‘))n = o?) @ =1= @ € p,. We prove it’s a group morphism.

ploYelr) = 2. T
— ég(a . %), since T(O(j> Cu, CF

= ¢(oT)

Next we prove it’s injective. If a(o) = 1, 0(a) = a. Then o fixes F'(a) hence being
the identity map. Then Gal(F(a)/F) is isomorphic to a subgroup of a cyclic group
thus cyclic as well. O



Kummer theory is the converse of the proposition above.

Theorem 4.38 (Kummer). Let K/F be a Galois extension whose Galois group is
Z/mZ = (o) where m|n. Then K = F(a) with o™ € F*.

Proof. Assume &, is a primitive m-th root of unity 1 obtained from u,. Then
(KF] _ em . o
Ni/p(&n) =&m "' = & = 1. Hence according to Theorem (multiplicative form

of Hilbert 90), there exists some a # 0 satisfying &, = @ = o(a) = a-&,. Since
o(a™) = (ay,)™ = a™, o™ € F*. And we can see m is the minimal integer satisfying
a™ € Fx. Next we consider extensions F' C F(a) C K and prove Gal(K/F(«a))
is trivial. Otherwise there is 7 € Gal(K/F(«a)) C Gal(K/F) = (o) such that

T=01<i<m-—1 But 7(a) =c(a) = a’, # a. A contradiction! O

Note if we let a = o where « is defined above, then the order of a in F*/(F*)"
is the minimal integer satisfying a®4® € F* according to Lemma . Hence
ord(a) = m. In the following for simplicity given a group G, a G-extension of F
means a Galois extension K/F whose Galois group is isomorphic to G. Then we
have the corollary

Corollary 4.39. There is a bijections between
{Z/mZ-extensions of F where m|n} <— {(a) C F*/(F*)"|ord(a) =m}  (32)

Proof. We first prove it’s well defined. Consider the morphism of part “<” and «
is a root of X" — a. Since u C F, the splitting field F'(«) is independent from the
choice of the root a. And if (a) = (b) then there is an integer k with (k,m) = 1 such
that a = b*. Assume [ is a root of X™ —b. Then a = 3* is a root of X™ — a. Then
F(a) C F(a). The converse is also true since as we have proved F'(«) and F(3) are
splitting fields independent from the choice of o and 3 respectively.

From Theorem [4.38] we see such morphism of part “<” is suejective and we
only need to prove it’s injective. If there are two elements a,b haveing the same
order m in F*/(F*)" and assume o" = a, " = b satisfying K = F(a) = F(§),
there is a morphism ¢ : Gal(K/F) = (6) — u, in Proposition 4.37, Then we could
define ¢, (0) = % and @g(o) = 076) Note imy = p,, = % and # are both
m-th primitive roots of unity 1. Hence there exists some integer k with (k,m) = 1

such that % = (#)k = o(aB™*) = af~*, which means af* € F*. And
then (af™*)" = ab™" € (F*)". Hence in F*/(F*)", a = b* with (k,m) = 1 and

(a) = (b). O

Note the cyclic group Z/mZ has the beautiful property with exponent dividing n
which means the order of any element in Z/mZ divides n. And this can be generalized
as
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Definition 4.40. A Kummer extension of F is an abelian extension K/F such
that the order of any element T € Gal(K/F) divides n.

K/F may not be cyclic nor finite. For example groups Z/nZ x Z/mZ and
[[;2, Z/nZ will have the property stated above but are not cyclic and finite re-
spectively. There is a characterization of finite Kummer extensions.

Theorem 4.41. K/F is a finite Kummer extension iff K has the form

K = F(/ay, ..., /ar)

for some elements a; € F*.

Proof. “<": Every F'({/a;)/F is finite Galois by Proposition whose Galois group
is cyclic of order dividing n. Consider the following injection

Gal(K/F) — | [ Gal(F(y/a;)/F)

i=1

We see Gal(K/F) is abelian and every element in it has order dividing n.
“=": Since Gal(K/F) is finite abelian, the fundamental theorem for finitely
generated modules over a PID tells us

Gal(K/F) =2 Gy x ... x G,

where G;’s are cyclic of order dividing n. Assume K; = K7 and H; = [[G; x {1}.
i at j
Since H; <G is normal, Gal(K;/F) = Gal(K/F)/H; = G,. Then from the Theorem
4.38] K; = I'(y/ay) for some a; € F* and K = K, -...- K, = F(3/ax, ..., /a,) follows
rom the following Lemma [4.42]
]

Lemma 4.42. Let K/F be finite Galois extension with Galois grooup
G=Gal(K/F)=G x..xG,
Then K = K, - ... - K, where K; = K and H; = T][G; x {1}.

i#] at j
Proof. We prove by induction on r. If » = 1 then it’s obvious. If r = 2, we need to
prove [K; - Ky : F| = [K : F]. Given an element z € K; N Ky, it’s fixed by H; and
Hs. Then x is fixed by H, - Hyo = G = K; N Ky = F. And since H; < G is normal,
K;/F is finite Galois. According to the Proposition [3.14]

Gal(K; - Ko/ F) = Gal(K; /F) x Gal(K»/F)
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then [Kl 'K2 : F] = [Kl : F] . [Kg : F] == ’Hll . ‘HQ‘ == |G| == [KF]

We assume the lemma is true for < r and consider the condition on r + 1.
Suppose H; = [[G; x {1} and H, = [] G;x {1} x {1} . Then by assumption

1#] at j i#r, r+1 at r at r+1

K=K, .. KK where K; = K'i and K = K. Since H, < H,, H, 1,
K, K,;1 C K. Moreover Gal(K/F) = Gal(K/F)/Gal(K/K]) = G, X G,41. We
see from the condition r = 2 we have proved, K| = K,-K,;;. Then K = K;-...- K, 4.
This proves the lemma. ]

Topics talked above are classical Kummer theory and actually there is a viewpoint
of Galois cohomology. We assume K, = Fj, is the separable closure of F. K,/F
is Galois since for any element in K, its minimal polynomial over F' is separable
and then all roots of this polynomial will lie in K. Hence K,/F is normal as well.
And we can see K,/F is the maximal Galois extension contained in F. Therefore
K, = liLnEi where F;/F is finite Galois. For any finite Galois extension F;/F, we

have the following short exact sequence of G; = Gal(E;/F')-modules

0 — pp —E— (E)" —0 (33)
r— z"

Note for any a € K, the polynomial X" — a is separable hence all roots lying in
K. Then we see (K})" = K. Hence Ky = lim(E;)" as well. Consider the left
—

[

exact functor Homgyg,(Z, —) = (—)% and there will exist a long exact sequence.
0 — p — (B)% — ((B)") = HY(Grp) — HY (G E) =0 (34)

where H(G;, E}) = 0 follows from the Theorem [4.18| (multiplicative form of Hilbert
90) and G, acts trivially on p,. Then u = u,, (EX)% = F* and ((EZX)”)G =

(E)"NF*. Moreover for group cohomology if G acts trivially on A, then B'(G, A) =
0. Then H'(G, A) = Z}(G, A). Assume f : G — A is a 1-cocycle. We have zf(y) —
flzy) + f(x) =0 = f(xy) = f(x) + f(y) which is actually a group homorphism.
Hence H'(G, A) = Homgyoups(G, A). Here H'(Gy, ;) = Homgroups(Gi, in).  The

long exact sequence implies
((Eix)n M FX)/<FX)n = HomGrouPS(Giv [in)

Also notice that lim((E;)"NF) = K,NF = F. Since inductive limits of directed
—_

index set is exact, take inductive limits to the long exact sequence above and finally
we obtain )
0 — pty, — F* — F* = H!

cont

(G, pn) — 0 (35)
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where G = Gal(K,/F) and H.,,,,(G, 11,,) = Homrogroups(G, ptn) consists of all contin-
uous group morphisms where u, is equipped with discrete topology and G is with
Krull topology. Then

FX/(FX)n = HomToGroups(G, /vbn)

Next we study the connected morphism 0 further and we focus on finite Galois
case first. Looking at the following commutative diagram from which the long exact
sequence of finite Galois case come.

The connected morphism 0 is just the dotted arrows. Gievn an element a € (E)",
choose a root a of X" —a in E first. d'(a) : 0 — (0-a)a™! = % which also

belongs to Map(G}, i1,,). This is clear in snake lemma. Hence in general case

F*/(F*)" — HommoGroups (G fin), a+— (X :0 = @) (36)

where « is a root of X™—a. This isomorphism is similar to that in Corollary[£.39, And
we can check X, is continuous since o € ker(&,) iff o(«) = a iff 0 € Gal(K,/F(«))
where F(a)/F is finite. Hence Gal(K,/F(«)) is open from Remark (4) by
definition of Krull topology. But note it’s in fact not necessary to check X, is whether
well defined and continuous or not because all our results above come from the Section
and homological algebra with nothing new. Then X, satisfies all these properties
automatically.

From the checking process we see kerX,, = Gal(K,/F(:/a)) <G is normal. Then
F(3/a)/F is finite Galois. Moreover given distinct A, ..., X,,, we will have

kerX,, N...NkerX,, = Gal(K/F(/ai,..., /a.))

Now we still start from the long exact sequence of finite Galois case. Assume
K/F is a Kummer extension. Passing to inductive limits, we have

((KX)n N FX)/(FX)n = HomToGrOUPS(Gv /Ln)
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where G = Gal(K/F). The Kummer group of K/F' is defined to be
Kum(K/F) := ((K*)"NF*)/(F*)"

Especially if K/F is finite then Kum(K/F') = Homgroups (G, tn) and there will be a
perfect bimultiplicative paring:

(,):Gal(K/F) x Kum(K/F) = p,, {(o,a)=X,(0c)=—=

by choosing a o = {/a in K*. Tt satisfies following properties:
e (Bimultiplicative)

0109, a) = (01, a) - (03, a)

(0,a1a2) = (0,a1) - (0, as)

o (Perfect) If o € Gal(K/F) satisfies for all a € Kum(K/F), (0,a) = 1 then
o =1d. If a € Kum(K/F) satisfies for all 0 € Gal(K/F), (0,a) =1 then a =1
which is equivalent to a € (F*)".

Only the first part of perfect properties need some words. Since K/F is finite Kum-
mer, according to the Theorem K = F(y/ay, ..., 3/a,) where a; € (K*)" N F*.
And then kerX,, N .. NkerdX, = Gal(K/F(/ai,...,/a,)) = 1. Hence we see if
(0,a) =1 for all @ € Kum(K/F), then o € NykerX,, = 1. This perfect bimultiplica-
tive paring is called Kummer duality.

Moreover the inductive limits of all finite Kummer extensions form a maximal
Kummer extension and it contains all roots of X" — a where a € F. If the maximal
Kummer extension is denoted by K/F', then F' C K" and Kum(K/F) = F*/(F*)".

() Gal(K/F) x F*/(F*)" = i,

The paring is still perfect bimultiplicative, since K = F/(U; {/a;) where a; € F* and
then N ker&, = Gal(K/F(U; /a;)) = 1.

Until now we only consider about multiplicative forms of Kummer theory. In
the following we talk about Artin—-Schreier theory which is an analogy of Kummer
theory in the case of char = p > 0. In Kummer theory we consider the polynomial
X"™ — a, but here we consider the Artin Schreier polynomial X? — X —a € F[X].

Theorem 4.43. Let F be a field of char = p > 0. Then
(1) Givena € F, polynomials XP— X —a are either irreducible or completely reducible.

(2) If K/F is a cyclic extension of degree p, then K = F(«a) where o is a root of
XP— X —a for somea € F.
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Proof. (1). Assume a € F is a root of f(X) = X" — X —a. Then « + j where
0 < j <p-1lisalsoaroot of it since (a+7)?—(a+j)—a = (a’+37)—(a+j)—a = 0.
Note F, consists of all roots of X? — X. Hence if f(X) has a root in F then all its
roots in F'.

Now we suppose f(X) has no roots in F. If f(X) is not irreducible then f = gh
where g, h € F[X] and 0 < deg(g),deg(h) < p. Since f(X) = ?;é(X —a—7j),
9(X) = [[jes(X —a —j) where S C {0,1,...,p — 1}. Let d = deg(g) = |S|. Expand
g(X) = g(X) = X%4ay 1 X+ and agq = — Zjes(a+j) = _da_ZjeSj € F.
Then da € F = « € F since 0 < d < p. A contradiction.

We see for any irreducible polynomial X™ — X — a with a root «, its splitting
field is F'(«) of degree p with Galois group Z/pZ.

(2). Let K/F be a cyclic extension of degree p and G = Gal(K/F) = (o). Since
Trg/r(1) = [K : F]-1 =0, from the Theorem (additive form of Hilbert 90),
there is some o € K satisfying 1 = o(a) —a = o(a) = 1+ a. Then o/ (a) = j + «
where 0 < j < p— 1 are p’s distinct conjugates of a. Then K = F(«). Moreover to
prove the minimal polynomial of « is X? — X — a, it’s enough to prove o — a € F.
But o(a? —a)=(a+ 1P — (a+1) =a? — a Hence a? —a € F. O

This theorem can be generalized to p™-groups.
Theorem 4.44. If K/F is a Galois extension whose Galois group
Gal(K/F) 2 Z/pZ x ... x | pZ = (Z/pZ)"
Then there are ay,...,a, € F* such that K = F(ay,...,a,) where «; is a root of
XP — X —aj.
Proof. Use Lemma and Theorem 4.43] ]

We can also use Galois cohomology to reformulate the Artin—Schreier theory.
Assume again K is the separable closure of F' and G = Gal(K,/F'). There is a short
exact sequence

0—F, —K, > K, —0 (37)

r—— ol —x

Note ¢ is additive p(x +y) = (z+y)! — (r+y) =2 —x+ v —y = p(x) + ¢(y).
And ¢ is surjective. Given any element a € K consider the polynomial X? — X —a
which is separable since its derivative is —1 # 0. Then its roots are in K. There
will exist some = € K satisfying 2? — 2 = a. And obviously kery = F,. Take the
continuous cohomology to this short exact sequence we obtained the following long
exact sequence

(G,F,) — H}

G G a9 1
0 IE?p Ks Ks H cont

cont

(G, Ks)
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where K¢ = F and H} (G, K,) = 0 follows from Remark [4.34, And since G acts
trivially on F, then H' ,(G,F,) = Homr,roups(G, Fp). Then

0—F,—F—F-%H (GF,) —0 (38)

Explicitly

F/{a? — x|z € F} 2 Hy,p (G, Fp) = HommoGroups (G Fp)
ar— (0, : 0~ o(a) —a) (39)

where « is a root of the polynomial X? — X — a. Though it’s not necessary and
there is no distinguished difference between this case and the multiplicative case
considered before, you can check it’s well defined and 6, is actually a group morphism
by yourselves.

o € kerf, iff o(a) = a iff 0 € Gal(K/F(«)). Then kerf, = Gal(K,/F(a)) <G
is normal. This implies Gal(KX% /F) =~ G /ker, = Z/pZ since non trivial 6, is
suejective and K % = F(a).

Exercise 4.45. Let K/F be a Z/p"Z-extension where p is a prime and n > 1. Let
F C E C K be a subfield such that [K : E] = p. Prove the following statement: if
K = E(a) then we also have K = F(«).

Exercise 4.46. Let I be a field, n € N which is coprime to char(F), but F' is not
assumed to contain pu,. Let K = F(a) where a € F' is a root of X™ — a for some
a € F*. Prove that [K : F| divides n. (Hint: reduce to the case p, C F.)
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