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Abstract

This notes is about homotopy theory of topological spaces and the localization of categories. We de-
velop such a homotopy theory using techniques similar to simplicial sets. As for localization, we introduce
two methods to construct the localization category. One is the model category developed first by Quillen
and the other is the calculus of fractions which is in fact earlier than model categories. And we mainly
focus on the example of chain complexes.
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1 Homotopy Theory of Topological Spaces

1.1 Basic Concepts

There are two important notions in algebraic topology. The one is homology and the
other is homotopy. Both of them are functors in some sense from some categories contain-
ing topological or geometrical information to algebraic categories such as the category of
abelian groups Ab. In this section we mainly introduce some basic facts about homotopy
theory and a homotopy is actually a deformation of two functions.

Definition 1.1. Given two continuous maps f, g : X → Y between topological spaces, a homo-
topy between f and g is a continuous map H : X × I → Y such that H|I × 0 = f, H|I × 1 = g.
The relation is written as H : f ≃ g. Or we can say there is the following commutative diagram:

X

Y X
∐
X

X × I

i1i0

(f,g)

H

Fact 1.2. The homotopy relation in HomTop(X, Y ) is an equivalence relation. For a map
f : X → Y we can define H : X × I → Y, (x, t) 7→ x then f ≃ f . If we already have

H : f ≃ g, we letK : X×I (1X ,t7→1−t)−−−−−−−→ X×I H−→ Y , then g ≃ f . GivenH : f ≃ g, K : g ≃ h,
we have the following homotopy

K ∗H =

{
H(x, 2t), 0 ≤ t ≤ 1

2

K(x, 2t− 1), 1
2
≤ t ≤ 1

here K ∗H : f ≃ h. Then there is a quotien category of Top denoted by HoTop such that
it has the same objects as Top and HomHoTop(X, Y ) = HomTop(X, Y )/ ∼ is the homotopy
class of continuous maps. We need to prove it’s actually a category. For any homotopy
classes [f ], [g] we define [g]◦ [f ] = [g◦f ] and this definition is independent from the choice
of f and g. If we have H : f0 ≃ f1, K : g0 ≃ g1 we can define the homotopy g0 ◦f0 ≃ g1 ◦f1
as follows

K ◦ (H × 1I) : X × I
H×1I−−−→ Y × I K−→ Z

There is a natural functor γ : Top→ HoTop, X 7→ X, f 7→ [f ]. A homotopy equivalence
is an isomorphism in HoTop i.e. if f : X → Y is a homotopy equivalence then there is a
map g : Y → X such that f ◦ g ≃ 1Y , g ◦ f ≃ 1X . The class of homotopy equivalences is
denoted byH.

There is a universal property for HoTop.

Theorem 1.3. HoTop ∼= Top[H−1]
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Proof. This is an equivalence between categories and you can see Definition 2.1 for the
meaning of Top[H−1]. Given a functor F : Top → D taking homotopy equivalences to
isomorphisms, we only need to prove it preserves homotopy which means if f ≃ g then
F (f) = F (g).

X

Y X
∐
X X

X × I

i1i0
id

(f,g)

j

∇

H r

where ∇ = (idX , idX) and r(x, t) = x. We prove r is a homotopy equivalence. If it’s ture
then F (r) is an isomorphism and F (j0) = F (j1) = F (r)−1. Then F (f) = F (H ◦ j0) =
F (H ◦ j1) = F (g).

Note r ◦ j0 = r ◦ j1 = idX . j0 ◦ r : X × I → X × I, (x, t) 7→ (x, 0) Define X × I × I →
X × I, (x, t, s) 7→ (x, st). Then jo ◦ r ≃ idX×I . Hence [r] is an isomorphism with inverse
[j0].

In Top, is the initial object and ∗ the one point space is the terminal object. The cat-
egory of spaces with a point Top∗ is actually the category ∗/Top. In general we can de-
fine the relative category of topological spaces Top(2) consisting of objects the pair (X,A)
where A ⊆ X and morphisms f : (X,A) → (Y,B) such that f(A) ⊆ B. And a homotopy
in Top(2) is actually a mapH : (X×I, A×I)→ (Y,B). Moreover if f |A = g|A a homotopy
relative to A written as H : f ≃ g, rel A is a homotopy H : (X × I, A × I) → (Y,B) such
that H(a, t) = f(a) = g(a) for all a ∈ A, t ∈ I . You can prove it’s an equivalence relation
between all maps satisfying f |A = g|A.

In Top∗ the pointed homotopy H : (X × I, ∗ × I) → (Y, ∗) is actually a homotopy
relative to ∗.

Remark 1.4. With definitions above we can get a 2-category from Top i.e. a category
enriched in Cat where the mapping category Map(X, Y ) consists of continuous maps as
objects and homotopy classes relative to X × ∂I as morphisms. This means f, g : X → Y
are objects and [F ] where F : X×I → Y, f ≃ g is morphism between f and g. Note F ∼ G
if there is a mapH : X×I×I → Y, F ≃ G, relX×∂I where F |X×∂I = G|X×∂I = (f, g).
Given morphisms F1 : f ≃ g, F2 : g ≃ h let F2∗F1 be defined as in Fact 1.2. Then it’s trivial
to prove in the category Map(X, Y ) axioms of categories are valid. Now let us define the
composition

◦ : Map(Y, Z)×Map(X, Y )→ Map(X,Z)

Next we need to prove this composition functor preserves compositions in the category
of Map(Y, Z)×Map(X, Y ) which is just the axiom of 2-categories.

X Y Z

f

g

h

f ′

g′

h′
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Given homotopies F1 : f ≃ g, F2 : g ≃ h and F ′
1 : f ′ ≃ g′, F ′

2 : g′ ≃ h′, we need to prove
the following diagram is commutative

f ′ ◦ f

g′ ◦ g h′ ◦ h

F ′
1◦F1 (F ′

2∗F ′
1)◦(F2∗F1)

F ′
2◦F2

which is just to prove the interchange law (F ′
2 ◦F2)∗ (F ′

1 ◦F1) = (F ′
2 ∗F ′

1)◦ (F2 ∗F1) is true.
Note here F ′

1 ◦F1 is defined as in Fact 1.2 to be F ′
1 ◦ (F1× idX). It can be easily proved that

(F ′
2 ◦ F2) ∗ (F ′

1 ◦ F1) = (F ′
2 ∗ F ′

1) ◦ (F2 ∗ F1) =

{
F ′
1(F1(x, 2t), 2t), 0 ≤ t ≤ 1

2

F ′
2(F2(x, 2t− 1), 2t− 1), 1

2
≤ t ≤ 1

Next we introduce the concept of homotopy groups especially the fundamental groupoids.
Here we use the method similar to that in simplicial homotopy theory.

1.2 Homotopy Groups

We define the topological standard n-simplex to be |∆n| = {(t0, ...., tn)|ti ≥ 0, i =
0, ..., n,

∑n
i=0 ti = 1}. Then the 0-simplex |∆0| is just a point and |∆1| is an interval. |∂∆n|

denotes the boundary of |∆n| and |Λn
i | is obtained by throwing the i-th face of the bound-

ary. For |∆n|, the i-th face is the subspace of it where ti = 0. A 0-simplex is a point and
a 1-simplex is actually a path. If σ : |∆1| → X is a 1-simplex of X , then it has a natural
orientation from x = d1(σ) to y = d0(σ). In algebraic topology, π0(X) is defined to be the
set of path components of X . But, we can also express this fact in categorical language:

HomTop(|∆1|, X) HomTop(|∆0|, X) −→ π0(X)
d0

d1
(1)

π0(X) is translated as a coequalizer in Sets. For any map f : X → Y , f∗ : π0(X) →
π0(Y ) is indeced by the universal property of coqualizers. For any two paths σ, τ with
τ(0) = σ(1), we can define the composition of paths τ ∗ σ just like the composition of
homotopy in Fact 1.2. And we have known that such definition is up to homotopy in
Remark 1.4. But here we give a different definition of τ ∗σ which will help us understand
simplicial sets later.

Proposition 1.5. |Λn
k | is a strong deformation retract of |∆n|.

The proposition means there is a retraction r : |∆n| → |Λn
k | such that i◦r ≃ id|∆n| rel |Λn

k |.
The proof is intuitive. As n = 2 for example, the function r projects along the normal line
of the missing interval. Then use the fact that |∆2| is convex to construct the homotopy of
strong deformation retract.

There are some other important strong deformation retracts:

(|∆n| × {0 (or 1)}) ∪ (|∂∆n| × I) ⊆ |∆n| × I
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(|∆n| × {0, 1}) ∪ (|Λn
k | × I) ⊆ |∆n| × I

(In × {0 (or 1)}) ∪ (∂In × I) ⊆ In × I
The proof is also intuitive, we also take n = 2 for example. Consider the following dia-
gram

One of the faces is dug away in the picture. We fix a point on the top of the missing face
and project along the line of the fixed point and a point contained in the interior of the
triangular prism. And then use the convex property to construct the homotopy for strong
deformation retracts. According to the property of retraction, we conclude that for all
maps α : |Λn

k | → X , they can be extended to |∆n| → X .

|Λn
k | X

|∆n| ∗

α

i
α◦r

Later, we will see every X → ∗ is a Serre fibration and the lifting property in Top will be
studied in detail there. To define the composition of paths, we take n = 2 and considedr
|Λ2

1| ↪→ |∆2|

0 2

1

σ τ

τ ∗ σ
(2)

In the diagram above, 0 → 1 and 1 → 2 represent paths σ, τ respectively. Because of the
lifting property of |Λ2

1| ↪→ |∆2|, the two paths will induce a function on the whole |∆2|.
The new function restricting on [0, 2] will represents a new path, which is denoted by τ ∗σ.
It’s obvious to see, this definition of the composition of paths is the same as that we have
talked above if we choose the standard retraction r : |∆2| → |Λ2

1| which is the projection
along the middle line. But the lifting is actually arbitrary, and hence we need to prove it’s
unique up to homotopy. Note this composition above is defined for paths not for path
classes. Therefore we also need to prove it’s well defined for path classes. Note here the
homotopy is the pointed homotopy.
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Proposition 1.6. The composition above between paths is defined up to homotopy, which means
[τ ] ◦ [σ] = [τ ∗ σ] is well defined.

Proof. If h : σ ≃ σ′ rel |∂∆1|, g : τ ≃ τ ′ rel |∂∆1| and σ, τ represent paths x → y, y → z
respectively, then we have the following diagram:

σ′

σ τ

τ ′

h
g

A

B C

D

E

F

(3)

[A,D], [D,F ], [B,E], [E,C] represent paths σ, τ, σ′, τ ′ respectively. And via extensions on
top and bottom faces, [A,F ], [B,C] represent paths τ ◦ σ, τ ′ ◦ σ′ respectively. Then use the
fact that (|∆2| × {0, 1}) ∪ (|Λ2

i | × I) ⊆ |∆2| × I is a strong deformation retract to induce a
function defined on the whole triangular prism. Especially its restriction on [A,B,C, F ]
implies τ ◦ σ ≃ τ ′ ◦ σ′ rel |∂∆1|

Next, we want to prove the associativity of compositions.

Proposition 1.7. x0 x1 x2 x3
ω1 ω2 ω3 is a chain consisting of three paths. Then

ω3 ∗ (ω2 ∗ ω1) ≃ (ω3 ∗ ω2) ∗ ω1 rel |∂∆1|
Proof.

ω2

ω1

ω31

2

3

0

4

P = 0→ 1→ 2→ 3 ⊆ |∆3|
We first do extensions on [0, 1, 2], [1, 2, 3] independently, which will induce ω2∗ω1 : 0→

2 and ω3 ∗ ω2 : 1→ 3. Projecting along the plane [0, 4, 3], it’s easy to see [0, 1, 2] ∪ [1, 2, 3] ⊆
[0, 1, 2, 3] is a strong deformation retract. Based on this retraction, the path on P can
be naturally extended to the whole [0, 1, 2, 3], whose restriction on [0, 3] is denoted by
ω3 ∗ω2 ∗ω1. This path actually factors through 0→ 4→ 3. If we move the point 4 towards
2, this will give a homotopy ω3 ∗ω2 ∗ω1 ≃ ω3 ∗ (ω2 ∗ω1) rel |∂∆1|. On the other hand, if we
move 4 towards 1, then it will imply ω3 ∗ ω2 ∗ ω1 ≃ (ω3 ∗ ω2) ∗ ω1 rel |∂∆1|.
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To prove the existence of the identity and inverses, we need to use Proposition 1.6.

Proposition 1.8. The identity and inverses exist under the composition of path classes.

Proof.

α

α c1

0 2

1

0 → 1 and 0 → 2 represent the path α and 1 → 2 represents the constant path. Then the
function can be extended from |∂∆2| to |∆2| and it’s constant on α(t) along the dotted line
in the picture. Hence according to Proposition 1.6 c1 ∗ α ≃ α rel |∂∆1|.

α

c0

α−1

0 2

1

If we take a constant function on α(t) = α(1− t) along the dotted line, then we will have
α−1 ∗ α ≃ c0 rel |∂∆1|.

Now the fundamental groupoid Π1(X) of a space X is defined. Objects of Π1(X) are
points of X and morphisms are path classes. The composition of morphisms is just the
composition of path classes defined above. Then we see every morphism in Π1(X) is an
isomorphism. We take the fundamental group π1(X, x) to be HomΠ1(X)(x, x). We can also
view π1(X, x) as [(|∆1), |∂∆1|), (X, x)].

As a generalization of fundamental groups, we define higher homotopy groups as
πn(X, x) = [(|∆n|, |∂∆n|), (X, x)] where the homotopy is relative to |∂∆n|. For |∆n|/|∂∆n| ≈
In/∂In ≈ Sn, we have equations πn(X, x) = [(|∆n|, |∂∆n|), (X, x)] = [(In, ∂In), (X, x)] =
[(Sn, s), (X, x)].

To be convenient, we take πn(X, x) = [(In, ∂In), (X, x)]. There are n’s different group
structures on πn(X, x). If α, β : (In, ∂In) → (X, x) we can define the group structure as
follows for j = 1, ..., n.

β ∗j α =

{
α(..., 2tj, ...), tj ≤ 1

2

β(..., 2tj − 1, ...), 1
2
< tj ≤ 1
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These group structures are well defined which is proved in the situation n = 1.

Theorem 1.9. All the group structures on πn(X, x), n ≥ 2 are equal and commutative.

Proof.

(a1 ∗i a2) ∗j (b1 ∗j b2) = (a1 ∗j b1) ∗i (a2 ∗j b2)

=


b2(..., 2ti, ..., 2tj, ...), ti ≤ 1

2
, tj ≤ 1

2

b1(..., 2ti − 1, ..., 2tj, ...),
1
2
≤ ti ≤ 1, tj ≤ 1

2

a2(..., 2ti, ..., 2tj − 1, ...), ti ≤ 1
2
, 1
2
≤ tj ≤ 1

a1(..., 2ti − 1, ..., 2tj − 1, ...), 1
2
≤ ti ≤ 1, 1

2
≤ tj ≤ 1

Moreover these group structures have the same identity (the constant map). Therefore
they are equal and commutative according to the following lemma.

Lemma 1.10. If on a group G, there are two group structures · and ∗ sharing the same identity
element, and moreover if they satisfy (u ∗ v) · (u′ ∗ v′) = (u · u′) ∗ (v · v′), then · = ∗ and they are
commutative.

Proof. First, take v = u′ = 1,⇒u · v′ = u ∗ v′. Second, take u = v′ = 1,⇒ v · u′ = u′ ∗ v =
u′ · v.

We have known the definition of homotopy equivalence. Here we introduce a weaker
concept weak homotopy equivalence which is more suitable to study the homotopy type of
a space X .

Definition 1.11. f : X → Y is a weak equivalence or a weak homotopy equivalence if for
all x ∈ X , f∗ : π0(X)

∼→ π0(Y ) and f∗ : πn(X, x)
∼→ πn(Y, f(x)),∀n ≥ 1.

The homotopy equivalence is actually an equivalence, but the weak homotopy equiv-
alence is not an equivalence relation, because in general given a map f : X → Y we
may not construct a map g : Y → X to induce isomorphisms on all homotopy groups as
inverses of f∗.

A famous theorem states every homotopy equivalence is a weak equivalence. To prove
this we need more techniques.

If φ is a path in X from x0 to x1, we construct a map πn(X, x0)→ πn(X, x1) as follows.
Let α : (In, ∂In) → (X, x0). We define L′ : (In × {0}) ∪ (∂In × I) → X by L′(x, t) ={

α(x), t = 0

φ(t), x ∈ ∂In
. It’s well defined. For (In × {0}) ∪ (∂In × I) ⊆ In × I is a strong defor-

mation retract, there will be an extension L : In × I → X and L(−, 1) will define a map
(In, ∂In)→ (X, x1). We denote this function by Tφ(α).

In × 0 ∪ ∂In × I X

In × I

L′=(α,φ◦pr2)

∃ L
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Then Tφ(α) = L|In×1. In the diagram above the dotted line can be L′◦r where r : In×I =
In+1 → In × 0 ∪ ∂In × I is the retraction.

Lemma 1.12. The T defined above actually defines a functor from the fundamental groupoid of X
to the category of groups, Π1(X) → Groups. Hence, for any path class [φ], T[φ] will define an
isomorphism.

Proof. At first, we prove Tφ is well defined. Given h : α ≃ β rel ∂In, we should prove
Tφ(α) ≃ Tφ(β) rel ∂I

n where α, β : (In, ∂In)→ (X, x0), φ : x0 → x1.
Since (In × {0, 1} × I) ∪ (∂In × I × I) ∪ (In × I × {0}) = (∂In+1 × I) ∪ (In+1 × {0})

(In × {0, 1} × I) ∪ (∂In × I × I) ∪ (In × I × {0}) X

In × I × I

(
(Lφ,α,Lφ,β),φ◦pr3,h

)

Hence it can be extended to the whole In × I × I . Its restriction on In × I × {1} will
give the desire relative homotopy.

Now, we prove if h : φ ≃ ϕ rel ∂I , then Tφ(α) ≃ Tϕ(α) rel ∂I
n.

(In × {0, 1} × I) ∪ (∂In × I × I) ∪ (In × I × {0}) X

In × I × I

(
(Lφ,α,Lϕ,α),h◦prI×I ,α◦pr1

)

The same process is available.
Hence T is well defined and the fact that it preserves identity and compositions can

be proved using the same method above.

Lemma 1.13. If f, g : X → Y , H : X × I → Y, f ≃ g, φ = H|{x}× I a path from f(x) to g(x),
then we have the following commutative diagram:

πn(X, x) πn(Y, f(x))

πn(Y, g(x))

g∗

f∗

Tφ

Proof. Given α : (In, ∂In)→ (X, x).

G : In × I X × I Y
α×idI H gives a homotopy f ◦ α ≃ g ◦ α. On ∂In × I ,

G(x′, t) = H ◦ (α× id)(x′, t) = H(x, t) = φ(t). We should prove Tφ(f ◦ α) ≃ g ◦ α, rel∂In.

(In × {0, 1} × I) ∪ (∂In × I × I) ∪ (In × I × {0}) Y

In × I × I

(
(Lφ,fα,G),φpr3,fαpr1

)
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The restriction of the extension to In×I×1 gives a homotopy Tφ(f ◦g) ≃ g ◦α rel ∂In.

Theorem 1.14. Every homotopy equivalence is a weak equivalence.

Proof. Given f : X → Y, g : Y → X such that f ◦ g ≃ idY , g ◦ f ≃ idX , we have the
following commutative diagram:

πn(X, x) πn(X, g ◦ f(x))

πn(X, x)

id

g∗f∗

T

Hence f∗ is monic. The similar diagram will imply f∗ is epic. Hence it’s an isomorphism.

1.3 Adjoint Functors in Top

Definition 1.15. In Top, HomTop(X, Y ) consists of continuous maps between X and Y . In it
we can define the compact-open topology as follows. Let K ⊆ X be compact and U ⊆ Y be
open.

W (K,U) = {f : X → Y ∈ HomTop(X, Y )|f(K) ⊆ U}
W (K,U)’s form a subbasis of this topology which means ∩

finite
W (K,U) forms a basis. With this

topology the mapping space is denoted by Y X .

Remark 1.16. Given a continuous map f : X → Y , it induces the function f ∗ : ZY → ZX

by compositions. We prove it’s continuous.

Proof. Assume W (K,U) ⊆ ZX where K is a compact subset in X and U is an open subset
in Z.

X
f−→ Y

g−→ Z

g ∈ f ∗−1(W (K,U)) iff f ∗(g) = g ◦ f ∈ W (K,U) iff g ◦ f(K) ⊆ U iff g ∈ W (f(K), U).

Remark 1.17. Dually, f∗ is continuous as well. Consider f∗ : XZ → Y Z and W (K,U) ⊆
Y Z .

Z
g−→ X

f−→ Y

g ∈ f−1
∗ (W (K,U)) iff f∗(g) = f ◦ g ∈ W (K,U) iff f ◦ g(K) ⊆ U iff g(K) ⊆ f−1(U) iff

g ∈ W (K, f−1(U)).

Remark 1.18. In Sets, Y X = HomSets(X, Y ), then we will have the following adjunction

HomSets(X × Y, Z) ∼= HomSets(X,Z
Y )

where is isomorphism is defined by the evaluation. In categorical notions, this means
Sets is a closed symmetric monoidal category and Cat belongs to this class as well. For any
closed symmetric monoidal category V it’s enriched on itself. In V , the tensor product
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−⊗X admits a right adjoint Map(X,−). Note in the case of Sets,−⊗X is just−×X and
Map(X,−) is just (−)X . The enriched composition morphism

◦ : Map(Y, Z)⊗Map(X, Y )→ Map(X,Z)

is defined to be the dual of compositions of

Map(Y, Z)⊗
(
Map(X, Y )⊗X

) id⊗ ev−−−→ Map(Y, Z)⊗ Y ev−→ Z

where ev is dual to the identity map of Map(X, Y ) via the adjunction.

In general Top doesn’t have the property stated in Remark 1.18 which means some
−×X does not admit the right adjoint functor but for some special topological spaces X
it’s true.

Definition 1.19. A Hausdorff space X is locally compact if for any point x ∈ X and any open
neighborhood U containing it, there will exist an open neighborhood of x such that V ⊆ V ⊆ U
and the closure V is compact.

Remark 1.20. There is a more general notion of locally compactness for spaces not neces-
sarily Hausdorff. But under the assumption of Hausdorff property it’s equivalent to that
we state here. Why we choose this definition? In general talking about locally compact
space we are often interested in Hausdorff space such as Rn and manifolds

Proposition 1.21. Suppose X is locally compact Hausdorff. Then the evaluation map

ev = eX,Y : Y X ×X → Y, (f, x) 7→ f(x)

is continuous.

Proof. Let U ⊆ Y be an open subset. If (f, x) ∈ ev−1(U), then f(x) ∈ U and x ∈ f−1(U).
Since X is locally compact Hausdorff, there will be an open nerighborhood V of x such
that V ⊆ V ⊆ f−1(U) where V is compact. Hence f(V ) ⊆ U which means f ∈ W (V , U).
Then (f, x) ∈ W (V , U)× V ⊆ ev−1(U).

Theorem 1.22. For any locally compact Hausdorff space Y there is an adjuncion

−× Y : Top Top : (−)Y

and natural isomorphisms

HomTop(X × Y, Z) ∼= HomTop(X,Z
Y )

Proof. The adjuncion is induced from that in Sets and it’s enough to prove f : X×Y → Z

is continuous iff f̃ : X → ZY is continuous as well.
“⇒”. Suppose f is continuous and W (K,U) ⊆ ZY . x ∈ f̃−1(W (K,U)) iff f̃(x) ∈

W (K,U) iff f(x, y) ∈ U for all y ∈ K iff {x} ×K ⊆ f−1(U). For any y ∈ K there will be
open subsets Vy, V ′

y such that (x, y) ∈ Vy×V ′
y ⊆ f−1(U). Since K is compact, there are only

11



finitely many V ′
y ’s coveringK. Let V ′ = ∪

finite
V ′
y and V = ∩

finite
Vy. V ×V ′

y ⊆ Vy×V ′
y ⊆ f−1(U).

Then V × V ′ = ∪(V × V ′
y) ⊆ f−1(U) while K ⊆ V ′. We see x ∈ V ⊆ f̃−1(W (K,U)).

“⇐”. Assume f̃ is continuous.

f : X × Y f̃×idY−−−→ ZY × Y
eY,Z−−→ Z

From Proposition 1.21 we know it’s continuous.

Example 1.23. The unit interval I = [0, 1] is locally compact Hausdorff. Hence there is a
natural isomorphism

HomTop(X × I, Y ) ∼= HomTop(X, Y
I)

Similar to the diagram in Definition 1.1 here we can defined the concept of cohomotopy or
right homotopy (this name comes from homotopical algebra, see Definition 2.33) using the
following diagram

Y I

X Y × Y Y

(e0,e1)
H̃

(f,g) ∆

s∼

f ≃r g if such H̃ exists. Note 
H̃ : X → Y I

e0 ◦ H̃ = f

e1 ◦ H̃ = g

actually means H : X × I → Y , H|X × 0 = f and H|X × 1 = g which is just the definition
of homotopy.

In the diagram above s is the constant map sending y to the constant function y : I →
Y . In the following we will prove s is a weak homotopy equivalence and (e0, e1) is a Serre
fibration (see Definition 1.72) (in fact it’s a Hurewicz fibration, see Example 1.62 (1)). Then
it’s actually the diagram of right homotopy in the model category of Top.

Now we start to prove s is a weak homotopy equivalence. From Example 1.62 (2), we
know e0 is a Hurewicz fibration. Here we want show it’s a trivial Serre fibration, so that
after proving this since idY = e0 ◦ s, we conclude s is a weak homotopy equivalence.

According to Proposition 1.77, it’s enough to show e0 has the right lifting property
with respect to all |∂∆n| ↪→ |∆n|. But from the adjoint pair −× I and (−)I , the following
two lifting problems are equivalent

|∂∆n| Y I

|∆n| Y

e0 ⇔

|∂∆n| |∆n|

|∂∆n| × I (|∆n| × 0) ∪ (|∂∆n| × I)

|∆n| × I Y

i0

∃!

12



The second one is trivially solved since (|∆n| × 0) ∪ (|∂∆n| × I) ↪→ |∆n| × I is a strong
deformation retract.

Theorem 1.24. If X and Y are both locally compact Hausdorff, then the adjunction described in
Theorem 1.22 is a homeomorphism.

ZX×Y ≈ (ZY )X

Note we can in fact only assumeX is Hausdorff and such proof can be found in [Hat02]
Proposition A.16.

Proof. First we prove (̃−) : ZX×Y → (ZY )X , f 7→ f̃ is continuous. Since X and Y are
locally compact Hausdorff, X × Y is locally compact Hausdorff as well. This can be
checked directly. Then the map

ev = eX×Y,Z : ZX×Y × (X × Y )→ Z

is continuous. Then
ẽv : ZX×Y ×X → ZY

is continuous as well from Theorem 1.22. Still from Theorem 1.22

˜̃ev : ZX×Y → (ZY )X

is continuous. It’s obviously to see ˜̃ev = (̃−).
Next we prove it’s a homeomorphism.

HomTop(A,Z
X×Y ) ∼= HomTop(A×X × Y, Z) ∼= HomTop(A×X,ZY ) ∼= HomTop(A, (Z

Y )X)

The bijection is induced by the continuous map (̃−). Using Yoneda’s lemma, we see it’s
actually an isomorphism in Top hence a homeomorphism.

Remark 1.25. Note that the step to prove (̃−) is continuous can’t be omitted, since it
means this function is actually in Top. We can use Yoneda’s lemma, only if this is true.

Corollary 1.26. If Y is locally compact Hausdorff, then there is an adjunction at the level of
homotopy categories.

−× Y : HoTop HoTop : (−)Y

Proof. At first we should prove two functors are well defined, which means − × Y and
(−)Y preserve homotopies. If H : X × I → X ′, f ≃ g, then H × idY : X × I × Y →
X ′ × Y, f × idY ≃ g × idY . For (−)Y , consider

XY × I µ−→ (X × I)Y H∗−→ X
′Y

where the first function is (φ, t) 7→ (y 7→ (φ(y), t)) and the second function is defined by
composition. The second one is continuous according to Remark 1.17. Hence we only
need to prove µ is continuous as well. Assume K is compact in Y and U is open in X × I .
(φ, t) ∈ µ−1(W (K,U)) iff (y 7→ (φ(y), t)) ∈ W (K,U) iff (φ(K), t) ⊆ U . Note here t is fixed.

13



For any x ∈ φ(K) there will be open subsets Vx and V ′
x such that (x, t) ∈ Vx × V ′

x ⊆ U .
Since φ(K) is compact, we can choose finitely many of them and let V = ∪

finite
Vx ⊇ φ(K),

V ′ = ∩
finite

V ′
x. Then V × V ′ ⊆ U and (φ, t) ∈ W (K,V )× V ′ ⊆ µ−1(W (K,U)).

Next we need to prove the adjunction in Theorem 1.22 passes to homotopy. Suppose
f, g : X × Y → Z such that there is a homotopy H : X × Y × I → Z, f ≃ g. Then
H̃ : X × I → ZY , f̃ ≃ g̃. The converse is true as well.

Now let us talk about some universal constructions in Top∗. There coproducts are
wedge products, X ∨ Y = X

∐
Y

x0∼y0
and products are defined as usual. But apart from usual

products here is a special concept smash product which is defined to be

X ∧ Y =
X × Y

X × {y0} ∪ {x0} × Y
=
X × Y
X ∨ Y

where X ∨ Y ↪→ X × Y is x 7→ (x, y0), y 7→ (x0, y).

Example 1.27. Identify S1 with I/∂I , S1 ∧ S1 = I×I
I×{0,1}∪{0,1}×I

= I2/∂I2 ≈ S2.

Remark 1.28. Why we introduce the concept of smash products here? At the level of
Sets, usual products − × Y doesn’t admit a right adjoint (−)Y . For ZY , the base point is
the canstant map z0 : Y → Z. Hence in HomSets∗(X,Z

Y ) we should require for x0 ∈ X the
induced morphism Y → Z is constant and for any x ∈ X morphisms Y → Z should send
y0 to z0. This argument proves there is an ajunction in Sets∗.

− ∧ Y : Sets∗ Sets∗ : (−)Y

And it’s true as well in Top∗ if Y is locally compact Hausdorff. Moreover this adjuncion
can also pass to homotopy categories.

Remark 1.29. You should be careful. In general smash products are not associative which
is different from the case of usual products. But from the definition we see it’s commuta-
tive, and if X, Z are locally compact Hausdorff, then associative law is valid and we have
homeomorphisms

(X ∧ Y ) ∧ Z ≈ X ∧ (Y ∧ Z) ≈ X × Y × Z
{x0} × Y × Z ∪X × {y0} × Z ∪X × Y × {z0}

This can be proved using Yoneda’s lemma just like Theorem 1.24.

Remark 1.30. For any pointed space X , the cylinder is defined to be

Cyl(X) :=
X × I
{x0} × I

This construction characterize pointed homotopy, since any pointed homotopy H : X ×
I → Y factors through Cyl(X).
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The cone is defined to be

Cone(X) :=
X × I

{x0} × I ∪X × 0

and any pointed homotopy starting from a constant maps factors through Cone(X). The
final construction is called suspension

ΣX := X ∧ S1 =
X × I

{x0} × I ∪X × ∂I

All three constructions above are functorial in Top∗ and admit right adjoints. For
simplicity you can find them in Sets∗ and they are all valid in Top∗ even in HoTop since
I is locally compact Hausdorff. In Remark 1.28 we have described the adjunction induced
by − ∧ Y and (−)Y . Here Y = S1 and the functor − ∧ S1 is denoted by Σ. We write the
functor (−)S1 as Ω, which is called the loop space functor. Then we have the adjunction

Σ : Top∗ Top∗ : Ω

For Cyl(X), its right adjoint functor is HomSets(I,−) and for any set HomSets(I, Z) its
base point is the constant map. Note it’s different from that in Remark 1.28 and there the
right adjoint functor is actually HomSets∗(I,−). The functor HomSets(I,−) is also denoted
by (−)I and this will not make confusion since we rarely talk about it in the following.
Then we have the adjunction

Cyl : Top∗ Top∗ : (−)I

As for Cone(X), we see functions f̃ : X → Y I from f : X×I
{x0}×I∪X×0

→ Y should satisfy
sending x0 to constant map and for any x, f̃(x) sending 0 to the base point y0 ∈ Y . Hence
its right adjoint functor is defined to be the sub-path spaces with the initial point fixed
Path0(X) := {φ : I → X|φ(0) = x0}.

The suspension functor and loop space functor are important in algebriac topology
and they are the starting point of stable homotopy theory. Later we will see there is a gener-
alization of them in pointed model categories.

S0 = ∂I = {0, 1}. Then S0 ∧ X = X×∂I
{x0}×∂I∪X×0

. We can define the embedding X ↪→
S0 ∧ X, x 7→ (x, 1) which is actually a homeomorphism. Note X × ∂I = X

∐
X . From

this point the homeomorphism will be clear. Hence S0 ∧X ≈ X , especially S0 ∧ S1 ≈ S1.

Theorem 1.31. ΣnX ≈ X ∧ Sn ≈ X ∧ In/∂In for n ≥ 0.

Proof. X ∧ Sn ≈ X ∧ In/∂In is clear since Sn ≈ In/∂In. We assume ΣnX ≈ In/∂In holds
and then

Σn+1X = Σ(ΣnX) = Σ(X ∧ In/∂In)
= (X ∧ In/∂In) ∧ I/∂I
≈ X ∧ (In/∂In ∧ I/∂I)
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since Sn and S1 are locally compact Hausdorff and from Remark 1.29 we see in this case
smash products are associative.

In/∂In ∧ I/∂I =
In × I

∂In × I ∪ In × ∂I
= In+1/∂In+1

We conclude Σn+1X ≈ X ∧ In+1/∂In+1.

Corollary 1.32. ΣnS0 ≈ S0 ∧ Sn ≈ Sn and ΣSn ≈ Sn+1.

The collection of spheres {Sn} forms the sphere spectrum.

Definition 1.33. A spectrum X is a collection of pointed spaces X0 for n ≥ 0 with structure
maps

σX
n : ΣX → Xn+1

or with dual maps σ̃X
n : Xn → ΩXn+1. A Ω-spectrum is a spectrum such that all σ̃X

n are weak
homotopy equivalences.

We will not study spectrums in detail here and we advise readers to read [BaR20] if
they are interested in stable homotopy theory.

Remark 1.34. In Top∗ the pointed homotopy is just the homotopy relative to the base
point. We know πn(X, x0) is defined to be the relative homotopy class of maps between
Sn and X . Hence passing to HoTop∗

πn(X, x0) = [Sn, X]∗ = [ΣnS0, X]∗ = [S0,ΩnX]∗ = π0(Ω
nX)

In general, we can define a group structure on HomHoTop(ΣX, Y ) = [ΣX, Y ]∗. ΣX =
X×I

{x0}×I∪X×∂I
. For any two f, g : ΣX → Y we let

(g ∗ f)(x, t) =

{
f(x, 2t), 0 ≤ t ≤ 1

2

g(x, 2t− 1), 1
2
≤ t ≤ 1

and the map Σ : [ΣX, Y ]∗ → [Σ2X,ΣY ]∗ is a group homomorphism. Using Lemma 1.10,
we see for n ≥ 2, [ΣnX, Y ]∗ is abelian where ΣnX = X ∧ In/∂In = X×In

{x0}×In∪X×∂In
. There is

a natural question when the map Σ is a group isomorphism. It’s clear when computing
homotopy groups on spheres.

Using the homotopy excision theorem we can prove the suspension theorem which states
Σ : πi(S

n) = [Si, Sn]∗ → [ΣSi,ΣSn]∗ = πi+1(S
n+1) is an isomorphism for i < 2n − 1, an

epimorphism for i ≥ 2n− 1. Proofs can be found in [tom08] Section 6.4.

1.4 Fiber and Cofiber Sequences

In Sets∗ the sequence

(X, x0)
f−→ (Y, y0)

g−→ (Z, z0)

is called exact if f(X) = g−1(z0).
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Example 1.35. In Sets∗, 0 → (X, x0)
f−→ (Y, y0) don’t mean f is injective. For example let

(X, x0) = ({0, 1, 2}, 0) and (Y, y0) = ({0, 1}, 0), f(1) = f(2) = 1. Then this sequence will be
exact but f is not injective. This is different from that in an abelian category.

Definition 1.36. A sequence of pointed spaces A f−→ B
g−→ C is h-coexact if for any pointed space

Z, the following sequence
[C,Z]∗

g∗−→ [B,Z]∗
f∗
−→ [A,Z]∗

is exact. Dually it’s called h-exact if the sequence

[Z,A]∗
f∗−→ [Z,B]∗

g∗−→ [Z,C]∗

is exact. Here “h” means “pointed homotopy”.

Fact 1.37. We give more concrete explanations of h-coexactness here.
Given a pointed map ϕ : B → Z, f ∗(ϕ) = ϕ◦f : A→ Z is null homotopic which means

ϕ ◦ f ≃ constant map iff ∃φ : C → Z such that φ ◦ g ≃ ϕ. Let Z = C, φ = idC , ϕ = g. Then
this means g ◦f ≃ constant map, which is similar to the case of complexes. Note that here
all homotopies are pointed.

Definition 1.38. For a map f : X → Y the mapping cone is defined as the following pushout

X Y

Cone(X) Cone(f)

Z

i1

f

f1
ϕ

H

Φ

∃!

Remark 1.39. Recall in Remark 1.30, Cone(X) = X×I
{x0}×I∪X×0

. Here i1(x) = (x, 1). Then

Cone(f) =
Cone(X)

∐
Y

(x, 1) ∼ f(x)

and f1(y) = y. Consider the sequence

X
f−→ Y

f1−→ Cone(f)

Given a map ϕ : Y → Z such that f ∗(ϕ) = ϕ ◦ f : X → Z is null homotopic. Let
H : X × I → Z, constant map ϕ ◦ f . H factors through Cone(X). Then in the pushout
diagram there will be a unique map Φ : Cone(f)→ Z satisfying Φ ◦ f1 = ϕ. Hence

[Cone(f), Z]∗
f∗
1−→ [Y, Z]∗

f∗
−→ [X,Z]∗

is exact and the original sequence is h-coexact.
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Definition 1.40. For a map f : X → Y , the mapping path space is defined as the following
pullback

Z

Path0(f) Path0(Y )

X Y

ϕ

H̃

Φ

∃!

f1 e1

f

Remark 1.41. Here

Path0(f) = X ×Y Path0(Y )

= {(x, φ)|f(x) = φ(1), where φ : I → Y with φ(0) = y0}

From Example 1.23 we know the homotopy and cohomotopy are equivalent. Consider
the sequence

[Z,Path0(f)]∗
f1
∗−→ [Z,X]∗

f∗−→ [Z, Y ]∗

Given a map ϕ : Z → X and a pointed homotopy H : Z × I → Y, constant map ≃ f ◦ ϕ.
Then H indeuces H̃ : Z → Path0(Y ) with e1 ◦ H̃(z) = H(z, 1) = f ◦ ϕ(z). Therefore there
exists the unique Φ : Z → Path0(f) satisfying f 1 ◦ Φ = ϕ. Then the sequence above is
exact and

Path0(f)
f1

−→ X
f−→ Y

is h-exact.

In general there are following long h-coexact and h-exact sequences.

Theorem 1.42 (Cofiber Sequence or Pupp Sequence). For any pointed map f : (X, x0) →
(Y, y0), the h-coexact sequence X f−→ Y

f1−→ Cone(f) induces a long h-coexact sequence of pointed
spaces

X
f−→ Y

f1−→ Cone(f)
∂−→ ΣX

Σf−→ ΣY
Σf1−−→ ΣCone(f)

Σ∂−→ ... (4)

where

∂ = p(f) : Cone(f) ↠ ΣX =
X × I

{x0} × I ∪X × ∂I
= Cone(X)/i1(X) = Cone(f)/f1(Y )

is the canonical quotient map. Then for any pointed space (Z, z0), there is a long exact sequence

[X,Z]∗
f∗
←− [Y, Z]∗

f∗
1←− [Cone(f), Z]∗

∂∗
←− [ΣX,Z]∗

Σf∗
←−− [ΣY, Z]∗

Σf∗
1←−− ...

Dually there is a theorem for the fiber sequence.
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Theorem 1.43 (Fiber Sequence). For any pointed map f : (X, x0) → (Y, y0), the h-exact se-

quence Path0(f)
f1

−→ X
f−→ Y induces a long h-exact sequence of pointed spaces

...
Ωi(f)−−−→ ΩPath0(f)

Ωf1−−→ ΩX
Ωf−→ ΩY

i(f)−−→ Path0(f)
f1

−→ X
f−→ Y

where i(f) sends a loop φ to (x0, φ).

We only prove Theorem 1.42 and Theorem 1.43 is left to readers since all things are
dual.

Proof of Theorem 1.42. We use the long h-coexact sequence we have proved in Remark 1.39
to prove this theorem.

X
f−→ Y

f1−→ Cone(f)
f2−→ Cone(f1)

f3−→ ...

We have the following commutative diagram

X Y Cone(Y )

Cone(X) Cone(f) Cone(f1)

ΣX ≈ Cone(X)/im i1 ΣX ≈ Cone(f)/im f1 ΣX ≈ Cone(f1)/im j1

i1

f

f1

i1

j1

p

j

p(f)

f2

q(f)r(f)

where

Cone(f1) =
Cone(Y )

∐
Cone(f)

(y, 1) ∼ f1(y) = y
=

Cone(Y )
∐

Cone(X)
∐
Y

(y, 1) ∼ y, (x, 1) ∼ f(x)
=

Cone(Y )
∐

Cone(X)

(x, 1) ∼ (f(x), 1)

then Cone(f1)/Cone(Y ) = Cone(X)/X × 1 = ΣX .
We first show q(f) is a pointed homotopy equivalence. Define

r(f) : ΣX → Cone(f1), (x, s) 7→

{
(x, 2s), 0 ≤ s ≤ 1

2

(f(x), 2− 2s), 1
2
≤ s ≤ 1

We see r(f) ◦ q(f) : Cone(f1)→ Cone(f1) is that

(y, s) 7→ (f(x), 0) = (y, 0) = ∗, (x, s) 7→

{
(x, 2s), 0 ≤ s ≤ 1

2

(f(x), 2− 2s), 1
2
≤ s ≤ 1

The pointed homotopy H : Cone(f1)× I → Cone(f1), idCone(f1) ≃ r(f) ◦ q(f) is defined as

(y, s, t) 7→ (y, (1− t)s), (x, s, t) 7→

{
(x, (1 + t)s), 0 ≤ s ≤ 1

1+t

(f(x), 2− (1 + t)s), 1
1+t
≤ s ≤ 1
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On the other hand q(f) ◦ r(f) : ΣX → ΣX is just (x, s) 7→

{
(x, 2s), 0 ≤ s ≤ 1

2

(s, 1), 1
2
≤ s ≤ 1

. Then we

can define the pointed homotopy K : ΣX × I → ΣX, idΣX ≃ q(f) ◦ r(f) as follows

(x, s, t) 7→

{
(x, (1 + t)s), 0 ≤ s ≤ 1

1+t

∗, 1
1+t
≤ s ≤ 1

These prove q(f) is pointed homotopy equivalence.
Consider

X
f−→ Y

f1−→ Cone(f)
f2−→ Cone(f1)

f3−→ ...

This induces the following diagram where τ : Σx → ΣX, (x, s) 7→ (x, 1 − s) is a homeo-
morphism such that τ ◦ τ = id and τ ◦ Σf = Σf ◦ τ .

Cone(f) Cone(f1) Cone(f2)

Y ΣX ΣY

f1

f2

p(f)

p(f1)

f3

q(f) ∼
q(f1)

∼

Σf◦τ

Next we prove this diagram is homotopy commutative which means Σf ◦ τ ◦ q(f) ≃ p(f1)
⇔ Σf ◦ τ ≃ p(f1) ◦ r(f)⇔ Σf ≃ p(f1) ◦ r(f) ◦ τ .

Note that p(f1) ◦ r(f) ◦ τ : ΣX → ΣY is actually

(x, s) 7→ (x, 1− s) 7→

{
(f(x), 2s), 0 ≤ s ≤ 1

2

(x, 2− 2s), 1
2
≤ s ≤ 1

7→

{
(f(x), 2s), 0 ≤ s ≤ 1

2

∗, 1
2
≤ s ≤ 1

and we can define the pointed homotopy to be

L : ΣX × I → ΣY, (x, s, t) 7→

{(
f(x), (1 + t)s

)
, 0 ≤ s ≤ 1

1+t

∗, 1
1+t
≤ s ≤ 1

Hence this diagram is commutative in HoTop∗. Then we apply the functor [−, Z]∗ to this
diagram. We obtain

[Y, Z]∗ [Cone(f), Z]∗ [Cone(f1), Z]∗ [Cone(f2), Z]∗

[ΣX,Z]∗ [ΣY, Z]∗ [ΣY, Z]∗

f∗
1 f∗

2 f∗
3

p(f)∗
q(f)∗∼=

(τ◦Σf)∗

p(f1)∗

q(f1)∗

∼=

τ∗

∼=

Note that the top sequence is exact since X f−→ Y
f1−→ Cone(f)

f2−→ Cone(f1)
f3−→ ... is h-

coexact. Then the following sequence is exact

[Y, Z]∗ [Cone(f), Z]∗ [ΣX,Z]∗ [ΣY, Z]∗
f∗
1 p(f)∗ Σf∗

20



then
X

f−→ Y
f1−→ Cone(f)

p(f)−−→ ΣX
Σf−→ ΣY

(Σf)1−−−→ Cone(Σf)

is h-coexact.
Be careful here! In the diagram Cone(Σf) is different from ΣCone(f). To obtain the

sequence in the Theorem 1.43 we need to prove they are homeomorphic. Actaully we
prove we have the following commutative diagram

ΣX ΣY Cone(Σf) Σ2X Σ2X Σ2Y

ΣCone(f)

Σf

Σf1

(Σf)1 p(Σf)

X ≈

µ

≈
Σ2f

Σp(f)

where µ : Σ2X → Σ2X, (x, s, t) 7→ (x, t, s). If we prove this, then we succeed in extending
the h-coexact sequence to the level of n = 2. If we have extended the sequence to the level
of n, you can apply the functor Σn−1 to the diagram above or you can understand it that
we replace f by Σf . Finally we extend the sequence to the leveal of n + 1. Now let us
prove such diagram really exists.

First we describe Cone(ΣX) and ΣCone(X) concretely.

Cone(ΣX) =
X × I × I

({x0} × I × I) ∪ (X × ∂I × I) ∪ (X × I × 0)

ΣCone(X) =
X × I × I

({x0} × I × I) ∪ (X × 0× I) ∪ (X × I × ∂I)

They are homoemorphic via µ. This homeomorphism is denoted by X .

ΣX ΣY

Cone(ΣX) Cone(Σf)

ΣCone(X) ΣCone(f)

Σ2X

iΣX
1

Σf

ΣiX1

(Σf)1 Σf1

X ≈

jΣX

X
∃!

Σj
Σp(f)

where ΣiX1 = X ◦ iΣX
1 : (x, s) 7→ (x, s, 1) 7→ (x, 1, s). Since Σ is left adjoint to Ω hence

preserving colimits especially pushouts. Then by the uniqueness of pushouts, we see
X is a homeomorphism. And we can use the universal property of pushouts to check
µ ◦ p(Σf) = Σp(f) ◦ X .
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1.5 Cofibrations

Definition 1.44. For any map f : X → Y , the mapping cylinder of f is defined to be the
following pushout

X Y

X × I Cyl(f)

i0

f

f0

then Cyl(f) = (X×I)
∐

Y
(x,0)∼f(x)

.

Remark 1.45. Consider the map r : Cyl(f) → Y such that y 7→ y, (x, s) 7→ f(x). r ◦ f0 =
idY . Then r is a retraction. Actually f0 : Y ↪→ Cyl(f) is a strong deformation retract. For
f0 ◦ r : Cyl(f)→ Cyl(f), y 7→ y, (x, s) 7→ f(x) = (x, 0), we define the homotopy

H : Cyl(f)× I → Cyl(f), (x, s, t) 7→ (x, st), (y, t) 7→ y

then H : f0 ◦ r ≃ idCyl(f). And we will have a factorization

X Cyl(f) Y
i1

f

r
∼

where r is a homotopy equivalence.

Definition 1.46. Given a map i : A → X we say it has the homotopy extension property
(HEP) or call it cofibration if for any space Z and maps g : X → Z, h : A × I → Z satisfying
g ◦ i = h ◦ iA0 there exists H : X × I → Z such that H ◦ iX0 = g, H ◦ (i× id) = h.

A A× I

X X × I

Z

i

iA0

i×id
hiX0

g

H

∃

Remark 1.47. Consider the mapping cylinder diagram

A X

A× I (A× I) ∪i (X × 0) = Cyl(i)

iA0

i

i0
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The diagram in Definition 1.46 is equivalent to the following diagram

(A× I) ∪i (X × 0) Z

X × I ∗

(i×id,iX0 )

(h,g)

∃ H

Hence HEP is just a special case of lifting property. More precisely, using the adjunction
induced by − × I and (−)I in Top, we see the lifting problem is also equivalent to the
following one

A ZI

X Z

i

h̃

e0

g

H̃

Hence cofibrations are just those maps having the left lifting property with respect to
e0. The class is just l(e0) where this notation comes from the Chapter of Homotopical
Algebra. Then according to Theorem 2.10 the class of cofibrations is closed under retracts,
pushouts, coproducts and transfinite compositions.

Remark 1.48. In the diagram above (second diagram in Remark 1.47), we let (h, g) = id
andZ = Cyl(i). This means there will exist a map r : X×I → Cyl(i) such that r◦j = idCyl(i)

where j = (i × id, iX0 ). Then especially j is an injection. Actually for any map i : A → X ,
it’s a cofibration iff j admits a retraction r. In this case, H will be (h, g) ◦ r. Consider the
following factorization

A Cyl(i) X × I
iA1

i×1

j

Note that iA1 is actually an injection since Cyl(i) = (A×I)
∐

X
(a,0)∼i(a)

. This means the cofibration i

is an injection. Later we will see i is even an embedding.

Lemma 1.49. Given an equalizer in Top

X Y Z
f

g

where Z is Hausdorff, then X is a closed subspace of Y .

Proof. X = {y ∈ Y |f(y) = g(y)} with subspace topology. To prove X ⊆ Y is closed we
need to prove Y −X is open. Given y ∈ Y −X , f(y) ̸= g(y). Since Z is Hausdorff, there are
disjoint open subsets U, V of Z containing f(y), g(y) respectively. y ∈ f−1(U)∩g−1(V ) ̸= ∅.
And f−1(U) ∩ g−1(V ) ∩X = ∅ otherwise there will exist x ∈ X , f(x) = g(x) ∈ U ∩ V .

Proposition 1.50. The cofibration i : A → X is actually an embedding. If X is Hausdorff, then
i(A) is closed in X .
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Proof. Consider the diagram

A Cyl(i)I

X Cyl(i)

i

h̃

e0

i0

H̃

where h̃ is induced from h : A × I → Cyl(i) the pushout of i : A → X (see Remark 1.47).
Let u = h̃(−)(1

2
) : A→ Cyl(i), v = H̃(−)(1

2
) : X → Cyl(i).

Assume i′ : A → i(A), u′ : A → u(A), v′ : i(A) → u(A). Then v′ ◦ i′ = u′ : A → u(A).
And u(a) = h̃(a)(1

2
) = h(a, 1

2
) = (a, 1

2
) in Cyl(i) = (A×I)

∐
X

(a,0)∼i(a)
. This is an embedding.

Therefore u′ is a homeomorphism. u′−1 ◦ v′ ◦ i′ = idA. i′ has a continuous inverse. Since in
Remark 1.48, we have proved i is injective which means i′ is a bijection. We conclude i′ is
a homeomorphism.

Next we assume X is Hausdorff and then X × I is Hausdorff as well.

X × I Cyl(i) X × Ir

id

j

Consider the equalizer of idX×I and j ◦ r where symbols j and r come from Remark 1.48.
This equalizer is just j(Cyl(i)) = (i(A) × I) ∪ (X × 0) which is closed in X × I according
to Lemma 1.49. We use this to prove i(A) is closed in X .

Given x /∈ i(A), (x, 1
2
) /∈ i(A) × I and then (x, 1

2
) /∈ j(Cyl(i)). There will exists open

subsets W1,W2 such that (x, 1
2
) ∈ W1 ×W2 ⊆ X × I and (W1 ×W2) ∩ j(Cyl(i)) = ∅. The

latter means (W1×W2)∩ (i(A)× I) = (W1 ∩ i(A))×W2 = ∅ ⇒ W1 ∩ i(A) = ∅. This proves
X − i(A) is open.

Remark 1.51. For a cofibration i : A ↪→ X , whether i(A) ⊆ X is closed or not is important.
If i is a closed embedding, then Cyl(i) = (A × I) ∪i (X × 0) = (A × 0) ∪ (X × 0). The
topology induced by pushouts coincides with the subspace topology. Since for any maps
g : X → Z and h : A × I → Z with g|A = h|A × 0, they define a continuous map
(h, g) : (A×I)∪(X×0)→ Z. Note in this caseA×I andX×0 are closed in (A×I)∪(X×0)
under the subspace topology. Since the continuous map glued along finite closed subsets
is continuous (Lemma 1.52), (h, g) will be continuous. Hence (A×I)∪ (X×0) satisfies the
universal property of pushouts. Then (A × I) ∪ (X × 0) = Cyl(i). According to Remark
1.48, to know a closed embedding iis whether a cofibration, we only need to check if there
exists a retraction for the natural embedding (A× I) ∪ (X × 0) ↪→ X × I . And finally we
obtain the Corollary 1.53

Lemma 1.52. X = ∪n1Xi where Xi’s are closed in X . Given maps fi : Xi → Y satisfying
fi|Xi ∩Xj = fj|Xi ∩Xj , then this defines a unique continuous map f : X → Y .

Proof. The uniqueness is obvious and we only need to prove it’s continuous. For any
closed subset Z ⊆ Y , f−1(Z) = ∪n1f−1

i (Z) where f−1
i (Z) is closed in Xi hence closed in X .

Then f−1(Z) is closed.
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Corollary 1.53.
(1) If i : A → X is a cofibration, then the natural embedding (A × I) ∪ (X × 0) ↪→ X × I has a
retraction. It’s actually a strong deformation retract.

(2) If A ⊆ X is closed and there is a retraction for (A× I) ∪ (X × 0) ↪→ X × I , then A ↪→ X is a
cofibration.

Proof. (1). The existence of such retraction is the same as that in Remark 1.48. Note there
is a natural map (A×I)∪i(X×0)→ (A×I)∪(X×0), whose images inX×I coincide. Then
we only need to prove this retraction r : X×I → (A×I)∪ (X×0) is a strong deformation
retract, which is equivalent to findH : X×I×I → X×I, j◦r ≃ idX×I rel(A×I)∪(X×0).

(X × I × 0) ∪ (X × I × 1) ∪ (A× I × I) ∪ (X × 0× I) X × I × I

X × I × I

(j◦r,idX×I,prA×I ,prX×0
)

∃ H

H is defined to be

(x, s, t) 7→
(
pr1r(x, (1− t)s), (1− t)pr2r(x, s) + st

)
(2). See Remark 1.51.

From this corollary, we see |∂∆n| ↪→ |∆n| is a cofibration.

Theorem 1.54. In Remark 1.45, in such factorization of f : X → Y , r is a homotopy equivalence
and i1 is a cofibration.

Proof. It only remains to prove i1 is a cofibration. i1 : X → Cyl(f) = (X×I)
∐

Y
(x,0)∼f(x)

, x 7→ (x, 1)

is a closed embedding. Then from the Corollary 1.53 (2) it’s enough to prove (X×1×I)∪
(Cyl(f)× 0) ↪→ Cyl(f)× I admits a retraction.

Define r : Cyl(f)× I → (X × 1× I) ∪ (Cyl(f)× 0)

(y, t) 7→ (y, 0), (x, s, t) 7→

{
(x, s

1−t
, 0), 0 ≤ s ≤ 1− t

(x, 1, , s− 1 + t), 1− t ≤ s ≤ 1

Finally in this section we want to talk about the concept of the cofiber homotopy rela-
tion. Given a fixed topological space A now we work on the category of A/Top, in which
objects are morphisms i : A→ X and morphisms between i, j are the following commu-
tative diagram

A

X Y

i j

f
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There is also a homotopy relation in HomA/Top(i, j). Given a usual homotopyH : X×I →
Y, f ≃ g, we say it’s under A if for any t ∈ I , H(−, t) ◦ i = j, which is written as H : f ≃
g rel A. Obviously the homotopy relation under A is an equivalence relation and we have
the concept of homotopy equivalence in A/Top. If moreover i and j are cofibrations,
such homotopy equivalence is called the cofiber homotopy equivalence. However in this
case cofiber homotopy relations and usual homotopy equivalences are equivalent. We
will prove this theorem and the proof comes from [May99] Chapter 6 Section 5.

Theorem 1.55. Let i : A → X and j : A → Y be cofibrations and f : X → Y is a morphism in
A/Top. If f is a usual homotopy equivalence, then it’s a cofiber homotopy equivalence.

Proof. We should find a map g : Y → X in A/Top such that g ◦ f ≃ idX rel A. Then since
f is a homotopy equivalence, g will be a homotopy equivalence as well. Then there will
also exists a map f ′ : X → Y in A/Top such that f ′ ◦ g ≃ idY rel A. Then g has a left
homotopy inverse and a right homotopy inverse under A, both of which will be homo-
topy equivalent under A and this can be checked in the homotopy category of A/Top.
Therefore to prove this theorem it’s enough to find such g.

Since f is a homotopy equivalence, there is a map g′′ : Y → X such that g′′ ◦ f ≃ idX

⇒ g′′ ◦ f ◦ i = g′′ ◦ j ≃ i. Given a homotopy H : A × I → X, g′′ ◦ j ≃ i, since j is a
cofibration, the following lifting problem has a solution K : Y × I → X

(A× I) ∪j (Y × 0) X

Y × I

(j×id,iY0 )

(H, g′′)

K

Let g′ = K(−, 1). We see K : g′′ ≃ g′ and g′ ◦ j = H(−, 1) = i. This means g′ is a map in
A/Top and it’s the homotopy inverse of f in the usual sense. Now we only need to prove
g′ ◦ f : X → X admits a left homotopy inverse e : X → X under A. Then we can define
g = e ◦ g′. Hence replacing our original map f by g′ ◦ f , we can assume our f satisfying
f ◦ i = i and f ≃ idX . And we prove such f has a left homotopy inverse under A.

Choose a homotopy h : X × I → X, f ≃ idX . Since i : A → X is a cofibration, the
following diagram admits a lifting k : X × I → X, idX ≃ k1 = e.

(A× I) ∪i (X × 0) X

X × I

(i×id,iX0 )

(h◦(i×id), idX)

k

From the diagram we see e ◦ i = h ◦ (i× id)|A× 1 = idX ◦ i = i. Then e is in A/Top. e, f
are both homotopic to idX , and therefore there is a homotopy J : X × I → X, e ◦ f ≃ idX .
More specifically

J(x, s) =

{
k(f(x), 1− 2s), s ≤ 1

2

h(x, 2s− 1), 1
2
≤ s ≤ 1
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Now we consider the following complicated lifting problem

(A× I × I) ∪i×id (X × I × 0) X

X × I × I

(J ′, J)

L

Before describing J ′ in this diagram, we explain why i× id : A×I → X×I is a cifibration.
Look at the third diagram in Remark 1.47. Since I is locally compact Hausdorff, ZI×I ≈
(ZI)I . Replacing Z in that diagram by ZI , we see i× id : A× I → X × I is a cofibration as
well.

J ′(a, s, t) =

{
k(i(a), 1− 2s(1− t)), s ≤ 1

2

h(i(a), 1− 2(1− s)(1− t)), 1
2
≤ s ≤ 1

The lifting L : X × I × I → X gives a homotopy

e ◦ f = J0 = L0,0 ≃ L0,1 ≃ L1,1 ≃ L1,0 = J1 = idX rel A

Note that in the sequence of homotopy relations above, L0,0 ≃ L1,0 rel A follows from
L0,0 ≃ L0,1 rel A, L0,1 ≃ L1,1 rel A and L1,1 ≃ L1,0 rel A but not from J directly.

1.6 Fibrations

Dual to the diagram

A ZI

X Z

i

h̃

e0

g

H̃

in the definition of cofibrations (see Remark 1.47), we can define the fibration (Hurewicz)
as follows.

Definition 1.56. A map p : E → B is a (Hurewicz) fibration if for any spaces Z and maps
g : Z → E, h : Z × I → B satisfying h ◦ iZ0 = p ◦ g there exists H : Z × I → E such that
H ◦ iZ0 = g, p ◦H = h. This means the following diagram is commutative

Z E

Z × I B

iZ0

g

p

h

H
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or equivalently
Z

EI E

BI B

h̃

g

H̃

p∗

e0

p

e0

Remark 1.57. This property is called the homotopy lifting property (HLP). From the section
of Homotopical Algebra, we know the class of fibrations is just r(iZ0 ). Then they are closed
under retracts, pullbacks, products and compositions.

Example 1.58. In the Definition 1.56, if B = ∗, then we can let H = g ◦ pr1. Hence any
E → ∗ is a fibration. Then for any space E, B × E → B is a fibration since it’s a product
of fibrations.

Similar to Remark 1.45, for any continuous map f : X → Y we can replace it by a
fibration homotopically.

Definition 1.59. For any map f : X → Y , its mapping path space is defined to be the following
pullback

Path0(f) Y I

X Y

r e0

f

and
Path0(f) = {(x, φ)|φ : I → Y, φ(0) = f(x)}

Remark 1.60. Define i : X ↪→ Path0(f), x 7→ (x, cstf(x)) where cstf(x) denotes the constant
map at f(x). Then we have the following factorization

X Path0(f) Y
i

∼

f

p

where
p : Path0(f) Y I Y

e1
, (x, φ) 7→ φ(1)

Next we prove i : X ↪→ Path0(f) is a strong deformation retract and p is a fibration.

Proof. Define the retraction r : Path0(f) → X, (x, φ) 7→ x. Then it’s easy to check r ◦ i =
idX .

i ◦ r : Path0(f)→ Path0(f), (x, φ) 7→ (x, cstf(x))

We define the homotopy as

H : Path0(f)× I → Path(f), (x, φ, t) 7→ (x, s 7→ φ(st))
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Since the map

Y I × I × I (g,s,t)7→(g,st)−−−−−−−→ Y I × I (g,st) 7→g(st)−−−−−−−→ Y

is continuous, H ′ : Y I × I (g,s)7→(t7→g(st))−−−−−−−−−→ Y I is continuous. Hence H is continuous and it’s
then obvious to check H : i ◦ r ≃ idPath0(f) rel i(X).

It remains to prove p is a fibration. Given a lifting problem

Z Path0(f)

Z × I Y

iZ0

g

p

h

we want to find a mapH : Z → Path0(f) filling in the diagram. The map g : Z → Path0(f)
is actually equivalent to the following diagram

Z

Path0(f) Y I

X Y

rg

qg

g

r

q

e0

f

g(z) = (rg(z), qg(z)), pg(z) = qg(z)(1) = h(z, 0). To find such a lifting H

z (rg(z), qg(z))

(z, 0) h(z, 0) = qg(z)(1)

H

we need to solve

Z × I

Path0(f) Y I

X Y

H1

H2

H

r

q

e0

f

where H1(z, s) = rg(z). For H2, its adjuncion is H ′
2 : Z×I×I → Y . For (z, s, t) ∈ Z×I×I

when s = 0 it should be qg(z)(t) and when t = 1 it should be h(z, s). Therefore we can
define H ′

2 as follows

H ′
2 : Z × I × I → Y, (z, s, t) 7→

{
qg(z)((1 + s)t), t ≤ 1

1+s

h(z, (1 + s)t− 1), 1
1+s
≤ t ≤ 1
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If t = 0, H ′
2(z, s, 0) = qg(z)(0) = f(rg(z)). This defines H : Z × I → Path0(f).

In the following we will give some examples of fibrations and the famous one is cov-
ering spaces, but we won’t need them here. We plan to partially complete the unfinished
work in Example 1.23 and prove (e0, e1) : X → X ×X is a fibration. To do this we need a
helpful theorem.

Theorem 1.61.
(1) If i : A ↪→ X is a cofibration between locally compact Hausdorff spaces, then i∗ : ZX → ZA is
a fibration for all spaces Z.

(2) If p : E → B is a fibration, then p∗ : EZ → BZ is a fibration for all locally compact Hausdorff
spaces Z.

Proof. (1). The following lifting problem

B ZX

B × I ZA

iB0 i∗
H

is equivalent to a complicated one

B × A× 0 B × A× I Z

B ×X × 0 (B ×X × 0) ∪idB×i (B × A× I) = Cyl(idB × i)

B ×X × I

idB×iA0 =iB×A
0

idB×i
∃!

H̃

We explain why they are equivalent. At first we have a commuative diagram

B × A B ×X

B × I × A Z

iB0 ×idA

which induces a unique morphism Cyl(idB × i)→ Z. Then the equivalence will be easily
checked at the level of B × A × I and B × X × 0. Now it’s enough to prove idB × i is a
cofibration. In the proof of Theorem 1.55, we have proved i × idI is a cofibration if i is a
cofibration. But that proof is not valid here since we do not suppose B is Hausdorff.

From the Proposition 1.50, since X is Hausdorff i(A) is closed in X . Hence B × A
is closed in B × X . Consider the inclusion (B × X × 0) ∪ (B × A × I) ⊆ B × X × I .
Since i is a cofibration, the inclusion (X × 0) ∪ (A × I) ⊆ X × I admits a retraction
r : X × I → (X × 0)∪ (A× I). Then idB × r : B ×X × I → (B ×X × 0)∪ (B ×A× I) will
be the retraction, which means idB × i is a cofibration from the Corollary 1.53 (2).
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(2). The following two lifting problems are equivalent

X EZ

X × I BZ

iX0
⇔

X × Z E

X × Z × I B

iX×Z
0

p

Example 1.62.
(1) Consider the closed embedding i : ∂I ↪→ I . Since (I× 0)∪ (∂I× I) is a strong deforma-
tion retract of I × I , i is a cofibration between locally compact Hausdorff spaces. Hence
for any space X ,

(e0, e1) = i∗ : XI → X∂I ≈ X ×X, φ 7→ (φ(0), φ(1))

is a fibration.
(2) Given a closed embedding it : ∗ ↪→ I, ∗ 7→ t, which is a cofibration since I × 0)∪ (t× I)
is a strong deformation retract of I× I , where the retraction is defined to be the projection
along the parallel line of y = −1

t
x + 1 from left to right in [0, t]× I and along the parallel

line of y = 1
1−t
x− t

1−t
from right to left in [t, 1]× I . Then

et = i∗t : X
I → X∗ = X, φ 7→ φ(t)

is a fibration.

Like the previous section, at the end of this section we talk about fiber homotopy equiv-
alence on the category of Top/B. All concepts here are dual and we will not write them
again. Dual to Theorem 1.55, we have the following one.

Theorem 1.63. Let p : X → B and q : Y → B be fibrations and f : X → Y is a morphism in
Top/B. If f is a usual homotopy equivalence, then it’s a fiber homotopy equivalence.

1.7 Strøm’s Model Category Structure on Top

Recall the definition of model categories (see Definition 2.18).

Theorem 1.64. With cofibrations being closed cofibrations (see Definition 1.46), which means
the image of it is closed, weak equivalences being homotopy equivalences and fibrations being
Hurewicz fibrations, Top is a model category. This model category structure is called Hurewicz
model category structure or Strøm’s model category structure.

Our task of this section is to prove the theorem above, which is due to Strøm. At first
we prove the (M4) about lifting properties.
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Lemma 1.65. Let p : E → B be a fibration and A is a deformation retract of X . Moreover if there
is a map φ : X → I such that A = φ−1(0), then any lifting problem

A E

X B

i

f

p

g

can be solved.

Proof. Let r : X → A be the retraction and H : X × I → X, ir ≃ idX . Define

H ′ : X × I → X, (x, s) 7→

{
H(x, s

φ(x)
), s < φ(x)

H(x, 1), s ≥ φ(x)

Then we have the following commutative diagram

X E

X × I B

iX0

fr

p

gH′

F

When s = 0,

H ′(x, 0) =

{
H(x, 0) = ir(x), x /∈ A
H(x, 1) = x, x ∈ A

hence H ′(x, 0) = ir(x). gH ′iX0 = pfr = gir. Let h(x) = F (x, φ(x)). Such h : X → E is
the lifing we want. ph(x) = pF (x, φ(x)) = gH ′(x, φ(x)) = g(x) and hi(a) = F (a, φ(a)) =
F (a, 0) = fr(a) = f(a).

Proposition 1.66. If p : E → B is a fibration and A ↪→ X is a closed cofibration, then any lifting
problem

(X × 0) ∪ (A× I) E

X × I B

p

can be solved.

Proof. Let r : X × I → (X × 0) ∪ (A× I) be the retraction. We define the map

φ : X → I, x 7→ sup
t∈I
|t− pr2r(x, t)|

and then φ(x) = 0 iff ∀t ∈ I, t = pr2r(x, t). If a ∈ A, then r(a, t) = (a, t) ⇒ t = pr2r(a, t).
Conversely, we suppose x /∈ A. Consider the path

µ : x× I ↪→ X × I r−→ (X × 0) ∪ (A× I) pr1−−→ X
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µ(0) = x /∈ A. Since A is closed in X , µ−1(Ac) is open in I containing 0. Then there will be
an interval of the form [0, s) ⊆ µ−1(Ac) with s > 0. Hence the image of r|x × [0, s) lies in
X × 0 and for all t ∈ (0, s), pr2r(x, t) = 0 ̸= t. This proves φ−1(0) = A.

Next define ψ : X × I → I, (x, t) 7→ tφ(x). We see ψ−1(0) = (X × 0) ∪ (A × I). Then
applying Lemma 1.65, we conclude the lifting problem can be solved.

Proposition 1.67. Suppose i : A ↪→ X is a closed cofibration and p : E → B is both a fibration
and a homotopy equivalence (trivial fibration). Then any lifting problem

A E

X B

i

f ′′

f ′

f̄

can be solved.

Proof. Since p is a homotopy equivalence, there is some s : B → E satisfying p ◦ s ≃
idB, s ◦ p ≃ idE . Considering the lifting problem

B E

B × I B

iB0

s

p

p◦s≃idB

H

Let s′ = H(−, 1). We see p ◦ s′ = idB and H : s ≃ s′, which means s′ is the homotopy
inverse of p as well. Replacing s by s′ we can just assume p ◦ s = idB.

E

E B

p

p

sp

Then sp is a morphism in Top/B. Since sp is a homotopy equivalence over B with p
being a fibration, by Theorem 1.63, we see sp is a fiber homotopy equivalence. Hence we
can assume there is some map s′ : E → E over B and a fiber homotopy F : E × I →
E, s′ ◦ s ◦ p ≃ idE which means it satisfies pF (e, t) = p(e).

According to Proposition 1.66, the following lifting problem admits a solution

(X × 0) ∪ (A× I) E

X × I B

j

F ′′

p

F ′

F

where

F ′′ :

{
(x, 0) 7→ s′sf ′(x)

(a, t) 7→ F (f ′′(a), t)
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and F ′(x, t) = f ′(x). Note that on A × 0, F (f ′′(a), 0) = s′spf ′′(a) = s′sf ′i(a) = s′sf ′(a),
which means F ′′ is well defined and is continuous.

On X × 0, pF ′′(x, 0) = ps′sf ′(x) = f(x) and on A × I , pF ′′(a, t) = pF (f ′′(a), t) =
pf ′′(a) = f ′(a). Hence F ′ ◦ j = p ◦ F ′′. Define f̄(x) = F (x, 1) and then

f̄ i(a) = F (a, 1) = F ′′(a, 1) = F (f ′′(a), 1) = f ′′(a)

and pf̄(x) = pF (x, 1) = F ′(x, 1) = f ′(x).

Proposition 1.68. Assume i : A ↪→ X is both a closed cofibration and a homotopy equivalence,
and p : E → B is a fibration. Then any lifting problem

A E

X B

i

f ′′

f ′

f̄

can be solved.

Proof. r : X → X is the homotopy inverse of i. Let H : A× I → A, r ◦ i ≃ idA.

(X × 0) ∪ (A× I) A

X × I

(r,H)

H′

Let r′(x) = H ′(x, 1) ⇒ H ′ : r ≃ r′ and r′(a) = H(a, 1) = a. ir ≃ ir′ ≃ idX . Hence
r′ : X → A is the deformation retraction of A ⊆ X . Combining Lemma 1.65 with the first
part of the proof of Proposition 1.66, we conclude the lifting f̄ exists.

Proposition 1.67 and 1.68 have proved the (M4) of model categories. (M2) is clear in
the homotopy category HoTop. Next we prove (M3) is true.

Proposition 1.69. Closed cofibrations, Hurewicz fibrations and homotopy equivalences are closed
under retraction.

Proof. It’s enough to only prove the retraction of a closed cofibration is closed as well.

X Y X

X ′ Y ′ X ′

i

idX

f

r

g f

i′

idX′

r′

Suppose in the diagram above g is a closed cofibration. im g is closed ⇒ i
′−1(im g) is

closed. Since i′f = gi and i′ is injective, im f ⊆ i
′−1(gi(X)) ⊆ i

′−1(im g). On the other
hand, if x′ ∈ X ′ such that i′(x′) ∈ im g. Then there is some y ∈ Y , i′(x′) = g(y)⇒ r′i′(x′) =
x′ = r′g(y) = fr(y). Hence x′ ∈ im f . We conclude im f = i

′−1(im g) is closed.
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Proposition 1.70. For any continuous map f : X → Y , f = pi = qj where p is a fibration,
i is both a closed cofibration and a homotopy equivalence, q is both a fibration and a homotopy
equivalence and j is a closed cofibration.

We don’t plan to prove this factorization theorem here since the method Strøm uses
(see [Str72] Proposition 2) is limited and it’s difficult to apply it to any other situations,
which is different from Quillen’s small object argument. The limitation of Strøm’s method
actually lies in the fact that Strøm’s model category structure on Top is not cofibrantly
generated. A genelization of Strøm’s idea can be found in [BRi12] which can be applied to
other model categories not necessarily cofibrantly generated.

1.8 Quillen’s Model Category Structure on Top

Theorem 1.71. With fibrations being Serre fibrations and weak equivalences being weak homo-
topy equivalences, Top is a model category. This model category structure is called Quillen model
category structure.

Before explaining what the Serre fibration is, we explain why cofibrations do not ap-
pear in Theorem 1.71 (see Corollary 2.29). In a model category M, cofibrations are just
those having the left lifting property with respect to all trivial fibrations. Hence if we
have defined fibrations and weak equivalences, we can just define cofibrations to be those
maps having this lifting property. In this section we prove Theorem 1.71 via the standard
Quillen’s small object argument using the characterizations of fibrations and trivial fibra-
tions. Note that in this section, the word “fibration” always means the Serre fibration.

Definition 1.72. Let p : X → B be a continuous map. It’s a Serre fibration if for any integer
n ≥ 1, 0 ≤ k ≤ n the following lifting problem

|Λn
k | X

|∆n| B

i p

admits a solution.

Cofibrations are defined to be those maps having the LLP wrt all trivial Serre fibrations.
Note that for simplicity, we write “LLP wrt” and “RLP wrt” to mean “left lifting property
with respect to” and “right lifting property with respect to” respectively.

Remark 1.73. In some textbook, Serre fibrations are defined to be maps having the RLP
wrt all i0 : In ↪→ In × I . The two definitions are equivalent. Note that i0 : In ↪→ In × I
and |Λn

k | ↪→ |∆n| are canonically homeomorphic to i0 : |∆n| ↪→ |∆n|× |∆1| and (|∆n|×0)∪
(|∂∆n| × |∆1|) ↪→ |∆n| × |∆1| for n ≥ 0 respectively.

A classical Theorem ?? about anodyne extensions tells us that the smallest saturated
classes (see Definition 2.8) containing (|∆n| × 0) ∪ (|∂∆n| × |∆1|) ↪→ |∆n| × |∆1| and (X ×
0)∪ (Y ×|∆1|) ↪→ X×|∆1| for any relative CW-complex Y ⊆ X respectively are the same.
We give a quick proof below as Lemma 1.74. Hence from the Definition 1.72, we see Serre
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fibrations have the RLP wrt all i0 : In ↪→ In × I where we choose Y = ∅, X = |∆n|
and especially Serre fibrations are a special case of Hurewicz fibrations. However the
converse is much more complicated in some sense (but below I will a simple proof). To
prove the converse we need to assume some knowledge about simplicial sets.

Actually a map p : X → B has RLP wrt all i0 : In ↪→ In × I iff Sing•(p) : Sing•(X) →
Sing•(B) is a Kan complex, for which it has the RLP wrt all Λn

k ↪→ ∆n. Passing to the
geometric realization, we see p will be a Serre fibration in the sense of Definition 1.72.
Details can be found in the Kerodon page https://kerodon.net/tag/021Q.

However using Lemma 1.65 and Remark 1.66 we can give a simper proof. Assume
p has the RLP wrt all i0 : In → In × I and we prove it has the RLP wrt all (In × 0) ∪
(∂In × I) ↪→ In × I, n ≥ 0 which is canonically homeomorphic to |Λn

k | ↪→ |∆n|, n ≥ 1.
After proving this we see p is actually a Serre fibration in the sense of Definition 1.72.
Since (In × 0) ∪ (∂In × I) ↪→ In × I is a strong deformation retract, ∂In ↪→ In is a closed
cofibration and then such map φ exists. Conditions of Lemma 1.65 are satisfied expect the
fact that p is not a Hurewicz fibration. But that p has the RLP wrt all i0 : In ↪→ In × I is
enough. Note that to apply Lemma 1.65, A = (In×0)∪(∂In×I) = φ−1(0) andX = In×I .
Such lifting F will also exist and so does h.

Lemma 1.74.

A2 :=
{
(|∆n| × 0) ∪ (|∂∆n| × |∆1|) ↪→ |∆n| × |∆1|

}
A3 :=

{
(X × 0) ∪ (Y × |∆1|) ↪→ X × |∆1| ; Y ⊆ X is a relative CW-complex.

}
Let M2 and M3 denotes the smallest saturated classes of A2 and A3 respectively. Then M2 =M3.

Proof. Since |∂∆n| ↪→ |∆n| is actually a relative CW-complex (see Definition 1.79), it’s
obvious to see M2 ⊆M3. Hence it’s enough to prove M3 ⊆M2.
|∆1| ≈ I is locally compact Hausdorff ⇒ − × |∆1| commutes with arbitrary colim-

its.Then ∐(
(|∆n| × 0) ∪ (|∂∆n| × |∆1|)

)
= (

∐
|∆n| × 0) ∪ (

∐
|∂∆n| × |∆1|)

and ∐
(|∆n| × |∆1|) = (

∐
|∆n|)× |∆1|

Therefore
(
∐
|∆n| × 0) ∪ (

∐
|∂∆n| × |∆1|) ↪→ (

∐
|∆n|)× |∆1|

belongs to M2.
Suppose ∐

|∂∆n| Y

∐
|∆n| X
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is a pushout and then taking the functor −× |∆1|, we obtain a new pushout∐
|∂∆n| × |∆1| Y × |∆1|

∐
|∆n| × |∆1| X × |∆1|

This implies the following diagram is a pushout

(
∐
|∆n| × 0) ∪ (

∐
|∂∆n| × |∆1|) (X × 0) ∪ (Y × |∆1|)

∐
|∆n| × |∆1| X × |∆1|

then (X × 0) ∪ (Y × |∆1|) ↪→ X × |∆1| ∈M2.
For a general relative CW-complex Y ⊆ X , we have the pushout∐

|∂∆n| Y ∪ skn−1X

∐
|∆n| Y ∪ sknX

and this implies the following diagram is a pushout

(
∐
|∆n| × 0) ∪ (

∐
|∂∆n| × |∆1|) (X × 0) ∪

(
(Y ∪ skn−1X)× |∆1|

)
∐
|∆n| × |∆1| (X × 0) ∪

(
(Y ∪ sknX)× |∆1|

)jn−1

Taking the colimit of jn−1 we conclude (X × 0) ∪ (Y × |∆1|) ↪→ X × |∆1| ∈M2.

Before starting to prove Theorem 1.71, I want to state an important theorem for Serre
fibrations which can help compute homotopy groups, though we will not need it in this
section.
Theorem 1.75. Assume p : (X, x0) → (Y, y0) is a Serre fibration and its fiber is F = p−1(y0).
Then for all x ∈ F the following sequence is exact for groups when n ≥ 1 and for pointed sets
when n = 0, which is induced by (F, x)

i−→ (X, x)
p−→ (Y, y0).

... −→ πn(F, x)
i∗−→ πn(X, x)

p∗−→ πn(Y, y0)
∂−→ πn−1(F, x) −→ ... −→ π0(Y )

Proof. Suppose [α] ∈ πn(X, x) such that p∗([α]) = [p ◦ α] = 0 ∈ πn(Y, y0). Then p ◦ α ≃
csty0 rel |∂∆n|. Then the lifting problem is solved.

(|∆n| × 0) ∪ (|∂∆n| × I) X

|∆n| × I Y

(α,cstx◦pr1)

p

p◦α≃csty0 rel |∂∆n|

H
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β = H(−, 1) ⇒ p ◦ β = csty0 ⇒ im β ⊆ F and H : α ≃ β rel |∂∆n| in X . This proves
ker p∗ ⊆ im i∗. Since p ◦ i = csty0 , im i∗ ⊆ ker p∗ is trivial. Hence ker p∗ = im i∗.

Next we should define ∂ : πn(Y, y0)→ πn−1(F, x). For any [γ] ∈ πn(Y, y0),

|Λn
0 | X

|∆n| Y

cstx

p

γ

θ

we define ∂[γ] = [θ ◦ d0] where d0 : |∆n−1| ↪→ |∆n| represents the 0-th face. At first
we should check ∂ is well defined. Note that im γ| |∂∆n| = {y0} and therefore θ ◦ d0 :
(|∆n−1|, |∂∆n−1|)→ (F, x). Next if γ ≃ γ′ rel |∂∆n|, the following diagram can be solved.

(|∆n| × {0, 1}) ∪ (|Λn
0 | × I) X

|∆n| × I Y

((θ,θ′),cstx)

p

γ≃γ′ rel |∆n|

H

Note that (|∆n|×{0, 1})∪(|Λn
0 |×I) is canonically homeomorphic to (|∆n|×0)∪(|∂∆n|×I),

since they are all obtained by digging out a face of the boundary of the cube In+1. Then
H ◦ (d0 × idI) : θ ◦ d0 ≃ θ′ ◦ d0 rel |∂∆n−1|, whichi lies in F .

In the following we will use Lemma 1.78 and we advise readers to read it first. i∗∂[γ] =

[i ◦ θd0]. But in X , θ is the lifting of |∂∆n| (θd0,x,...,x)−−−−−−→ X and from Lemma 1.78 we know θd0
is trivial in πn−1(X, x). Then i∗ ◦ ∂ = 0.

Conversely, if [α] ∈ πn−1(F, x) satisfying i∗[α] = 0, then by Lemma 1.78 we having the
following diagram

|∂∆n| X

|∆n| Y

i

(i◦α,x,....,x)

p
θ

p◦θ

pθd0 = piα. But im i ◦ α ⊆ p−1(y0). Then pθd0 = csty0 . Hence [p ◦ θ] ∈ πn(Y, y0). From the
definition of ∂ we see ∂[p ◦ θ] = [α]. Then im ∂ = ker i∗.

Assume [α] ∈ πn(X, x), γ = p ◦ α and then we see ∂[p ◦ α] = [αd0] which is trivial.
Therefore ∂ ◦ p∗ = 0.

Conversely if ∂[γ] = [θd0] = 0 in πn−1(F, x). Then the following diagrams are homo-
topic

|∂∆n| X

|∆n| Y

i

(θd0,x,....,x)

p
θ

γ

≃
|∂∆n| X

|∆n| Y

i

x

p

γ
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One of them has a lifting and then so is the other (see the proof of Proposition 1.77 for
an explanation of this statement). Then for the second lifting problem, it has a solution
µ : |∆n| → X satisfying p ◦ µ = γ. Then p∗[µ] = [γ].

Application 1.76. We use the long exact sequence induced by Serre fibrations to compute
the homotopy groups of S1. Consider the covering map p : R → S1, θ 7→ (cos θ, sin θ).
We can suppose the base point of S1 is s0 = (1, 0) and then F = p−1(s0) = {2kπ|k ∈ Z}.
Homotopy groups of F are trivial for n ≥ 1 since Sn is connected. And note that R is
simply connected. Hence in this case our long exact sequence is just

∗ −→ π1(S
1, s0)

∂−→ F −→ ∗
and we see for n ≥ 2, πn(S1, s0) = 0. Here F ∼= Z, but it is not equipped with group
multiplication and we should prove ∂ is actually a group homorphism.

∗ = |Λ1
0| R

I = |∆1| S1

0

0

p

γ

θ

θ ◦ d0 is just θ(1). Since covering maps are Hurewicz fibrations with unique path lifting
property, for γ ∗ γ′ we can lift it pointwise which means we lift γ′ first and then γ with
constant map θ′(1) : ∗ → R. We conclude ∂(γ ∗ γ′) = γ(1) + γ′(1). Then ∂ is actually a
group homomorphism hence π1(S1, s0) ∼= Z.

This induces a question when the fiber F can be equipped with a group structure. A
limited situation is that for a covering map p : E → B if E is simply connected and locally
path connected, then π1(B, b) ∼= F ∼= Aut(p), whose proof uses the unique path lifting
property deeply.

In the following we start to prove Theorem 1.71. At first we need to characterise trivial
Serre fibrations.

Proposition 1.77. p : X → Y is a trivial Serre fibration iff it has the RLP wrt all inclusions
|∂∆n| ↪→ |∆n|, n ≥ 0, |∂∆0| = ∅.

|∂∆n| X

|∆n| Y

i p

To prove this result we need the following lemma:

Lemma 1.78. A map α : (|∆n|, |∂∆n|)→ (X, x) represents the identity element (constant map)
of πn(X, x) iff the following lifting problem can be solved.

|∂∆n+1| X

|∆n+1|

i

(α,x,....,x)

β
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where, (α, x, ...., x) describes n+ 1’s functions on faces of |∆n+1|.

Proof of Lemma 1.78. “⇒”. We simply denote the constant map (Y, y)→ (X, x) by x if there
is no confusion. SupposeH : x ≃ α rel |∂∆n| and we want show the existence of the lifting
β.

From Example 1.58 and Remark 1.73, for any spaces X , X → ∗ is a Hurewicz fibration
especially a Serre fibration.

(|∆n+1| × 0) ∪ (|∂∆n+1| × I) X

|∆n+1| × I

(x,(H,x,...,x))

K

Let β = K(−, 1) and then β| |∂∆n+1| = (α, x, ..., x).
“⇐”. If such extension β exists,

(|∆n+1| × {0, 1}) ∪ (
∣∣Λn+1

0

∣∣× I) X

|∆n+1| × I

((x,β),x)

K′

Then K ′ ◦ (d0 × idI) : x ≃ α rel |∂∆n|.

Proof of Proposition 1.77. “⇒”. If p : X → Y is a trivial Serre fibration, then p∗ : π0(X)
∼−→

π0(Y ). Given any point y ∈ Y , there is some x ∈ X such that there exists some path
connecting p(x) and y. Since Serre fibrations has the path lifting property, the path has a
lifting in X which means p−1(y) is not empty and p is surjective. This solves the problem
when n = 0. In the following, we assume n ≥ 1.

First, we prove a lemma that any two homotopic lifting problems are equivalent if p is
a Serre fibration.

|∂∆n| X

|∆n| Y

i

α

p

β

≃
|∂∆n| X

|∆n| Y

i

α′

p

β′

They are homotopic if there is a homotopic diagram connecting them:

|∂∆n| × I X

|∆n| × I Y

p

For two homotopic lifting problems, if one of them has a solution then so is the other. This
is easy to see, since Serre fibrations has the RLP wrt all (|∆n|×0)∪ (|∂∆n|× I) ↪→ |∆n|× I .
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Given a lifting problem
|∂∆n| X

|∆n| Y

i

α

p

β

we start to deform α and find a new solvable lifting problem. |Λn
k | is contractible which

means it’s homotopy equivalent to the one point space. Then we can find a homotopy
H : |Λn

0 | × I → |Λn
0 |, id|Λn

0 | ≃ 0 where 0 represents the constant map on the 0-th point
(1, 0, ..., 0) of |∆n|. Hence

h1 : |Λn
0 | × I

H−→ |Λn
0 | ↪→ |∆n| α−→ X

is the homotopy of α| |Λn
0 | ≃ α(0) = α(1, 0, ..., 0). According to Remark 1.73, since |Λn

0 | ↪→
|∂∆n| is a relative CW-complex, the following lifting problem can be solved for the Serre
fibration X → ∗.

(|∂∆n| × {0}) ∪ (|Λn
0 | × I)) X

|∂∆n| × I

(α,h1)

h

Assume α0 = h(−, 1) ◦ d0, x = α(0) and then h(−, 1) = (α0, x, .., x).

|∂∆n| × I X

|∆n| × I Y

h

p

The dotted line is obtained by the extension of the strong deformation retract (|∆n| ×
{0}) ∪ (|∂∆n| × I).

(|∆n| × {0}) ∪ |∂∆n| × I) Y

|∆n| × I

(β,ph)

K

Let β′ = K(−, 1). Hence the original diagram is homotopic with

|∂∆n| X

|∆n| Y

i

(α0,x....,x)

p

β′

Hence, by the Lemma 1.78, [p ◦ α0] = 0 in πn−1(Y, p(x)). For p is a weak equivalence, [α0]
is trivial in πn−1(X, x). Hence there is a homotopy α0 ≃ x rel |∂∆n−1|, which will in fact
give a homotopy h′ : (α0, x, ..., x) ≃ x.
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The diagram

|∂∆n| × I X

|∆n| × I Y

h′

p

will give a new homotopic diagram

|∂∆n| X

|∆n| Y

i

x

p

β′′

That p is a weak equivalence implies p∗ is surjective. Hence there is a map θ : (|∆n|, |∂∆n|)→
(X, x) such that [p ◦ θ] = [β′′]. This fact implies the diagram above is homotopic with the
following diagram which has a lifting solution θ.

|∂∆n| X

|∆n| Y

i

x

p

p◦θ

θ

Finally the original lifting problem is successfully solved.
“⇐”. If p : X → Y has the RLP wrt all inclusions |∂∆n| ↪→ |∆n|, then it has the RLP

wrt all relative CW-complexes Y ⊆ X especially |Λn
k | ↪→ |∆n|. Hence it’s a Serre fibration.

Next we prove it’s a weak equivalence.

|∂∆n| X

|∆n| Y

i

x

p

σ

θ

The diagram above implies p∗ is epic.
If [α] ∈ πn(X, x), [p ◦ α] is trivial in πn(Y, p(x)), then by Lemma 1.78 there will be an

extension:
|∂∆n+1| X

|∆n+1|

i

(pα,p(x),...,p(x))

β

And we will have a lifting in the following diagram:

|∂∆n+1| X

|∆n+1| Y

i

(α,x,...,x)

p

β

42



According to Lemma 1.78 again, [α] is trivial in πn(X, x). Hence, p∗ is monic, then an
isomorphism.

Proof of Theorem 1.71. (M1). Top is complete and cocomplete due to the fact that products,
coproducts, equalizers and coqualizers all exist in Top.

(M2). X Y Z
f g

, g ◦ f = h. Weak equivalences are homotopy isomor-
phisms. Hence, if f and g or g and h are weak equivalences, then h or f will also be a
weak equivalence. We now assume f and h are weak equivalences. It’s obvious to see
g∗ : πn(Y, f(x)) → πn(Z, gf(x)) are isomorphisms. f∗ : π0(X) → π0(Y ) is a bijection be-
tween path components of the space X and Y . Then, for any y ∈ Y , there exists an x ∈ X
such that f(x) and y are in the same path component and there is a path φ between them.

πn(Y, f(x)) πn(Y, y)

πn(Z, gf(x)) πn(Z, g(y))

Tφ

g∗ g∗

Tg◦φ

Hence g∗ : πn(Y, y) → πn(Z, g(y)) is an isomorphism for any y ∈ Y , which means g is a
weak equivalence.

(M3). We assume f is a retract of g.

X Y X

X ′ Y ′ X ′

i

f

r

g f

i′ r′

First, we let g be a weak equivalence.

πn(X, x) πn(Y, x) πn(X, x)

πn(X
′, x′) πn(Y

′, x′) πn(X
′, x′)

i∗

f∗

r∗

g∗∼= f∗

i′∗ r′∗

r ◦ i = idX . Hence i∗ is monic, which means g∗ ◦ i∗ = i′∗ ◦ f∗ is monic. Therefore f∗ is
monic. The similar argument shows f∗ is epic. Hence f∗ is an isomorphism and f is a
weak equivalence.

Since cofibrations and Serre fibrations are all defined by the lifting properties with re-
spect to a certain class of morphisms, from Theorem 2.10 and Corollary 2.11 we conclude
that they are closed under retraction.

To prove (M4), we need to prove (M5) first, but to prove (M5) we should state some
properties of pushouts in preparation of the small object arguments.

Suppose the following diagram is a pushout in Top:

X A

Y B

f

i j

g
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If i is monic, then so is j. In fact, B = A
∐
Y/ ∼, where elements of f−1(a) are identified

with a. Now, we want to prove the proposition that if X ⊆ Y is a strong deformation
retract, then A ⊆ B will also be a strong deformation retract.

H : Y × I → Y, i ◦ r ≃ idY rel X . We define G : B × I → B by

G(b, t) =

{
g ◦H(y, t), b = [y]

j(a) = [a], b = [a]

The statement above is proved.
Now we start to prove every map f : X → Y can be factored as f = p ◦ i where p is a

Serre fibration and i is a trivial cofibration. The proof of the other part of aixiom 5 is the
same as this.

D0 is the class consisting of all commutative diagrams of the following form:

|Λn
k | X = X0

|∆n| Y

f=p0

Then we will have the following pushout.∐
D0
|Λn

k | X0

∐
D0
|∆n| X1

Y

i0

p1

Clearly i0 is monic. Next, we denote the set consisting of all commutative diagrams

|Λn
k | X1

|∆n| Y

p1

by D1. Then, we will have the pushout X2. Continuing this process, finally we will obtain
the following commutative diagram:

X0 X1 ... colim Xi = Z

Y

i0

p0
p1

i1

p

Now we want to prove p : Z = colimXi → Y is a Serre fibration. In fact, because |Λn
k | is

compact, we actually have natural isomorphisms, which are induced by the composition
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of morphisms, colimi HomTop(|Λn
k |, Xi)

∼−→ HomTop(|Λn
k |, colim Xi). We prove that every

morphism |Λn
k | → colim Xi factors through some |Λn

k | → Xi.1
To be convenient, we may assume X0 = ∅, or we can just deal withXn+1−Xn. The two

ways are equivalent. Given |Λn
k | → Z = colimi Xi, the image in Z is compact and denoted

by K. We will prove K just intersects finitely many disjoint simplexes |∆n|.
If it’s not ture, then there will be a subset S of K such that every element of S is in

disjoint simplexes and it has infinitely many elements. We will prove S is closed i.e. Z−S
is open. It can be proved by induction. If Xi − S is open, then due to the gluing process
of pushouts, Xi+1 − S consists of the union of Xi − S and the interior of some simplexes
or simplexes minusing a point, which will also be open. Hence, S is compact. But, S is
endowed with discrete topology and has infinitely many elements. It’s impossible for S
to be compact. Therefore, K just intersects finitely many disjoint simplexes |∆n|, which
means the morphism |Λn

k | → colim Xi factors through some |Λn
k | → Xi.

That p : Z → Y is a fibration is shown in the following diagram:

|Λn
k | Xi Xi+1 Xi Z

|∆n| Y

p

The dotted line is due to the follwing pushout.∐
Di
|Λn

k | Xi

∐
Di
|∆n| Xi+1

Y

pi+1

Next, we prove i : X ↪→ Z has the left lifting property with respect to all Serre fibrations.
Given a lifting problem

X A

Z B

i

we decompose it as a series of lifting problems.
First we solve the problem

X A

X1 B

1The proof comes from [Hov99a] Lemma 2.4.7.
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Because A→ B is a Serre fibration, there will be a lifting.

|Λn
k | X A

|∆n| X1 B

The coproduct of them will be the diagram:∐
D0
|Λn

k | X A

∐
D0
|∆n| X1 B

Where X1 is the pushout. Hence there will be a lifting X1 → A.
We solve all the lifting problems

Xi A

Xi+1 B

and use the fact Z = colim Xi to solve the original lifting problem. Then it’s done. Espe-
cially, i ↪→ Z is a cofibration.

Now, we only need to prove i is a weak equivalence. |∂∆n| and |∆n| are compact, so
any diagram

|∂∆n| Z

|∆n|

can be factored as
|∂∆n| Xi Z

|∆n|

which means colimi πn(Xi, x) ∼= πn(Z, x).
Just like X ↪→ Z, X ↪→ X1 also has the left lifting property with respect to all Serre

fibrations. Therefore
X X

X1 {∗}

id

r
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X is a retract of X1, which will be shown a strong deformation retract.2
We consider this pushout first.

|Λn
k | X

|∆n| X ′

f

g

where X ′ ⊆ X1.
To define the homotopy of strong deformation retract H : X ′ × I → X ′ such that

H(x, t) = x if x ∈ X , we need to construct the function h : |∆n| × I → X ′ satisfying
some conditions. We view |∆n| as a subset of X ′. On |Λn

k | × I the function will be a
projection forgetting I . On |∆n| × {1} it will be the identity, and on |∆n| × {0} it’s j ◦ r
where j : X ↪→ X ′, r is the retraction coming from X1 → X .

(|∆n| × {0, 1}) ∪ (|Λn
k | × I) X ′

|∆n| × I

h

LetH||∆n|×I = h, which gives the desired homotopy j◦r ≃ idX′ relX . Hence, πn(X, x) ∼=
πn(X

′, x) ∼= ... ∼= πn(X1, x) ∼= ... ∼= πn(Z, x). Then, i : X ↪→ Z is a weak equivalence. (M5)
is proved.

(M4). We only need to prove the following lifting problem can be solved:

A X

B Y

i p

where i is a trivial cofibration and p is a fibration.
Decompose i as

A E B
j q

where j is a trivial cofibration and q is a fibration. q ◦ j = i is a weak equivalence. Hence,
q is a trivial fibration. Then the lifting problem can be solved as

A X

A E

B B Y

j

p
j

i q

v

id

u

2The idea to use the strong deformation retract is inspired by [Qui67] Chapter II, P3.4, Lemma 4.
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The original lifting problem can be solved.

A X

B Y

i pv◦u

Finally in this section, we talk about some basic facts about CW-complexes.3

Definition 1.79. Given an inclusion A ↪→ X , (A,X) is called a relative CW-complex if:

1. There is a decomposition of the space X , such that A = X−1 ⊆ X0 ⊆ ... ⊆ X

2. X = colim i≥−1X
i and X has the induced topology, which means U ⊆ X is open iff U ∩X i

is open for all i ≥ −1.

3. For all n ≥ 0, the following diagram is a pushout:∐
j∈J |∂∆n| Xn−1

∐
j∈J |∆n| Xn

From axiom 3, we can conclude Xn − Xn−1 ≈
∐

j∈J(|∆n| − |∂∆n|). Therefore we call
the process of axiom 3 gluing cells. Due to the property of colimits and pushouts, the
topology of X is determined by the inclusion A ↪→ X and all maps |∆n| → X . A subset
U ⊆ X is open iff U ∩ A and all U ∩ |∆n| are open.

Proposition 1.80. The inclusion A ↪→ X of a relative CW-complex is a cofibration.

Proof. p : Y → Z is a trivial fibration. According to Proposition 1.77, p has the RLP wrt
all |∂∆n| ↪→ |∆n|, which means |∂∆n| ↪→ |∆n| is a cofibration. Hence

∐
|∂∆n| ↪→

∐
|∆n|

will also be a cofibration. Cofibrations are stable under pushouts4. Then Xn−1 ↪→ Xn is a
cofibration. Any lifting problem

A Y

X Z

p

can be solved by the universal property of colimits. This implies A ↪→ X is a cofibration.

Definition 1.81. A CW-complex is a relative CW-complex (∅, X).

Corollary 1.82. In Top, any CW-complex is cofibrant.
3See [Hat02] Appendix for more details.
4Use the universal property of pushouts.
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Theorem 1.83. For any relative CW-complex (A,X), if A is Hausdorff or normal then X will
also be Hausdorff or normal.

Sketch of the Proof. See [Hat02] P522 Proposition A.3 for the process of construction.
The proof of Hausdorff property and normal property are the same. Hence, we may

assume A is normal. Then given any disjoint closed subsets K1, K2 of X , Ki ∩ A are
closed. Hence, we can find two disjoint open subsets of A to separate Ki ∩ A. If we have
found such open subsets of Xn−1, then we should try to find disjoint open subsets of Xn

to separate Ki ∩Xn. This can be done by considering the preimage of such open subsets
in Xn. Consider the pushout diagram in Definition 1.79, we should construct two good
enough disjoint open sets in |∆n|, where any one of the open subsets consists of two parts.
The one part is contained in |∆n| − |∂∆n|, and the other contains the preimage of open
subsets of Xn−1 in ∂∆n. Finally, the countable union of open subsets in each Xn is just
what we want.

Corollary 1.84. Every CW-complex is normal, hence Hausdorff.
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2 Homotopical Algebra

In this chapter we talk about the abstract theory of homotopical algebra which is also
called the theory of model categories and all of contents here are already in [Qui67].

Roughly speaking, in a model category there are three important classes of mor-
phisms, called fibrations, cofibrations and weak equivalences respectively. They reveal
the lifting properties and quasi-isomorphisms in a given category. For lifting property,
we have seen its importance in previous sections. But in fact here the most important
class of morphisms is that of weak equivalences. In general fibrations and cofibrations
are defined to help us study properties of weak equivalences, which is just similar to that
to study manifolds coordinates are not a must but they can really help us study mani-
folds. For a given manifold, there are many choices of local coordinates and for a class of
weak equivalences there may also be some choices of fibrations and cofibrations to make
them form a model category, which means in general for a category the model category
structure is not unique. In this section we will give the example of the category of chain
complexes and there are projective and injective model category structures on it.

Homotopical algebra is to study weak equivalences and some properties invariant
under weak equivalences. Hence it’s natural to look at localization categories with respect
to weak equivalences first.

Definition 2.1. Let C be a category with small Hom sets, and W be a set of morphisms. Then
there will exist the category of fractions (or called localization category) C[W−1] of C with
respect toW and a functor γ : C → C[W−1] such that:

(1) For any f ∈ W , γ(f) is an isomorphism in C[W−1].
(2) For any functor G : C → D such that ∀f ∈ W , G(f) are isomorphims, there is a unique
functor F : C[W−1]→ D such that F ◦ γ = G.

C C[W−1]

D

G

γ

F∃!

Remark 2.2. Obviously we know adding isomorphisms toW will not affect the universal
category C[W−1]. And we can enlargeW to become a subcategory of C and this will not
affect the localization category as well. Moreover such localization category always exists
though there will be some set theoretic difficulties. We give the proof of existence here.

Proof. We construct the category of fractions C[W−1] as follows. We consider a directed
graph G first. The vertexes in G are just objects in C. For any map f : A → B in W , we
add a map f−1 : B → A. The set of oriented edges in G consists of edges in C and those
f−1. Then, we identify the path f ◦ f−1 with idB , f−1 ◦ f with idA , g ◦ h with gh where
g, h ∈ Mor(C) , id ◦ g with g, h ◦ id with h where g, h ∈ G and g ◦ (h ◦ l) with (g ◦ h) ◦ l for
any oriented edges g, h, l ∈ G. The quotient directed graph will be the category C[W−1].
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There is another description of the Hom set of localization categories. In C[W−1] every
morphism X → Y has the following form:

X ←− X1 −→ X2 ←− X3 −→ ...←− Xn −→ Y

where left arrows are inW , right arrows in Mor(C). Sequences obtained by adding iden-
tities are viewed the same as the original one. Hence for any two sequences we can add
identities to them to make them having the same number of objects. So that we can define
a complicated equivalence relation among such sequences. This equivalence relation is
generated by the following diagram

X1 X2 ... Xn

X Y

X ′
1 X ′

2 ... X ′
n

∼ ∼ ∼

where vertical morphisms are in W . Two sequences are relevant if there is such a com-
mutative diagram above in C. The equivalence is generated by these relations.

Remark 2.3. The Definition 2.1 is strict since all such C[W−1]’s are isomorphic which
means there will exist one-to-one relations on objects and morphisms. But for categories
we only consider equivalence classes of them not isomorphism classes. Therefore we give
a weaker definition here.

Let HomW(C,D) be the full subcategory of the category of functors between C and D
consisting of those functors taking every morphism inW to isomorphisms. Then γ : C →
C[W−1] is defined to have the universal property

γ∗ : HomCat(C[W−1],D) ∼−→ HomW(C,D) (5)

where γ∗ is defined by composition and it’s an equivalence between categories not an
isomorphism. This will define C[W−1] up to equivalence.

Example 2.4. The category of all small categories is denoted by Cat and The set of equiva-
lences between categories is denoted byW . For any two functor F,G : C → Dwe say they
are equivalent if there is a natural isomorphism τ : F

∼⇒ G. It’s obvious to see it’s actually
an equivalence relation among HomCat(C,D) and it’s preserved by compositions. Hence
we can define the homotopy category Ho(Cat) to have the same objects as Cat and its
morphism sets are the equivalence classes described above. Then Ho(Cat) ∼= Cat[W−1].

Proof. The category generated by one isomorphism 1
∼−→ 2 is denoted by Ī . We write the

functor category ofD over Ī asDĪ . Then the proof is similar to Theorem 1.3 and Theorem
3.20. It’s enough to prove for any functor F : Cat → E taking categorical equivalences
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to isomorphisms, if there is a natural isomorphism between functors τ : G
∼⇒ H where

G,H ∈ HomCat(C,D), then F(G) = F(H).

DĪ

C D ×D D

D

pτ

(G,H) ∆

s∼

where τ : a 7→ (τa : G(a)
∼−→ H(a)), p : (x

∼−→ y) 7→ (x, y), ∆(x) = (x, x) and s : x → (idx :

x
∼−→ x). Note s is actually a categorical equivalence. Obviously it’s fully faithful. For any

y
∼−→ y′ in DĪ

y y

y y′

∼

∼

We see s is also essentially surjective hence a categorical equivalence. Then F(s) is an
isomorphism. We are done.

Remark 2.5. Note that localization of categories often cause set theoretic problems, which
means the morphism set of C[W−1] may be a proper class. Example 2.4 is a special case
since the morphism set of Ho(Cat) is small. Actually Cat is a model category which
we will talked about later and the localization of model categories with respect to weak
equivalences will not cause this set theoretic problem. What’s more apart from the tech-
nique of model categories, there is a useful technique to solve this set theoretic problem as
well which is actually earlier than Quillen’s work and whose motivation is more natural.
Such technique is called calculus of fractions. You can find details in Section 3.2.

Next to talk about model categories, let us begin with the factorization system first.

2.1 Factorization Systems

In a category C, let i : A→ B and p : X → Y be two morphisms in it. We say i has the left
lifting property with respect to (LLP wrt) p or p has the right lifting property with respect to
(RLP wrt) i if for any commutative diagram

A X

B Y

i p

there exists h : B → X making the new diagram commutative. If F is a class of mor-
phisms in C, we use l(F) (resp. r(F)) to denotes the class of morphisms having the LLP
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(resp. RLP) wrt all morphisms in F . 5

Definition 2.6. In a category C, we say f : X → X ′ is a retract of g : Y → Y ′ if there is the
following comutative diagram:

X Y X

X ′ Y ′ X ′

i

f

idX

r

g f

i′

idX′

r′

such that r ◦ i = idX , r
′ ◦ i′ = idX′ .

Lemma 2.7. In a category C, if f : X → Y can be factored as f = p ◦ i where f has the RLP
(resp. LLP) wrt i (resp. p), then f is a retract of p (resp. i).

X Y

Z

f

i p

Proof. We only need to assume f ∈ r(i), since on the other hand we can deal with this
problem in Cop.

X X

Z Y

i f

p

h

This diagram above implies

X Z X

Y Y Y

i

f

idX

h

p f

Now we want to talk about properties of l(F).
Definition 2.8. A class of morphisms F is closed under pushouts if given any pushout diagram,

X X ′

Y Y ′

f f ′

5In different textbooks, notations of l(F) and r(F) are different (see [Cis19], [Hov99a] and [Rie14]). Here we follow [Cis19] since
we think his notations are the simplest.
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that f ∈ F implies f ′ ∈ F ; it’s closed under retraction if in the diagram of Definition 2.6, that
g ∈ F implies f ∈ F ; it’s closed under coproducts if given fi : Xi → Yi belonging to F for i ∈ I ,
then so does ∐

i∈I

fi :
∐
i∈I

Xi →
∐

Yi
i∈I

F is closed under transfinite compositions if for every well-ordered set I with the initial
element 0, for any functor X : I → C such that for any element i ∈ I, i ̸= 0, the colimit
colim
j<i

X(j) exists and the induced map

colim
j<i

X(j)→ X(i)

is in F , then the colimit colim
i∈I

X(i) exists and the morphism X(0)→ colim
i∈I

X(i) belongs to F .

The class of morphisms satisfying properties above is called saturated.

Remark 2.9. Actually given a class of morphisms F , if it’s closed under pushouts and
transfinite compositions, then it will also be closed under coproducts.

Proof. Suppose there are morphisms fi : Xi → Yi belonging to F for i ∈ I . From the
well-ordering axiom, we may assume I is well-ordered and 0 is its initial element. Firstly,
we have a pushout diagram

X0

∐
i∈I
Xi

Y0 Z0

f0

where Z0 is actually Y0
∐

i∈I\0
Xi. If 1 is the successor of 0, then we have the pushout

X1 Z0

Y1 Z1

f1

where X1 → Z0 is just X1 →
∐
i∈I
Xi → Z0. For a limit number i, we let Zi be the following

poushout
Xi colim

j<i
Zj

Yi Zi

fi

Since F is closed under pushouts,
∐
i∈I
Xi → Z0, Z0 → Z1 and colim

j<i
Zj → Zi all belong to

F . Note that colim
j<i

Zj is actually (
∐
j<i

Yj)
∐
(
∐
i′≥i

Xi′). Finally we see colim
i∈I

Zi =
∐
i∈I
Yi, which
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can also be proved by the universal property of coproducts of Yi’s. Then that F is closed
under transfinite compositions implies

∐
Xi

i∈I
→

∐
Yi

i∈I
is in F .

Theorem 2.10. In a category C, for any class of morphisms F , l(F) is saturated.

Proof. From Remark 2.9 we only to check l(F) is closed under retraction, pushouts and
transfinite compositions.

Step 1 (retraction). If f is the retraction of g where g ∈ lF , given any p : A → B
belonging to F

X Y X A

X ′ Y ′ X ′ B

i

f

idX

r

g f

α

p

i′

idX′

r′

θ

β

Then there will be a lifting θ : Y ′ → A and θ◦i′ will give the solution of the lifting problem

X A

X ′ B

f

α

p

β

Hence f ∈ l(F).
Step 2 (pushouts). Look at the pushout diagram in Definition 2.8 where f ∈ l(F) and

f ′ is the pushout of f . Also given the lifting problem above

X ′ X A

Y ′ Y B

f ′ f

α

pθ

β

µ

θ is induced by f . Using the universal property of pushouts, we see the solution µ exists.
Step 3 (transfinite compositions). If 1 is the successor of 0,

X0 A

X1

...

colimXi
i∈I

B

p
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the lifting respect to X0 → X1 exists. Especially for any Xi → Xi+1 where i + 1 is the the
successor of i, the lifting Xi+1 → A exists. If i is a limit number, then from the univsersal
property of colimits we see there will exist colim

j<i
Xj → A. And then since colim

j<i
Xj → Xi

belongs to l(F), the lifting Xi → A exists. Finally there will be some colim
i∈I

Xi → A making

the diagram commutative.

Corollary 2.11. In a category C, for any class of morphisms F , r(F) is closed under retraction,
pullbacks, products and the dual process of transfinite compositions especially finite compositions.

Proof. Apply Theorem 2.10 to Cop.

Fact 2.12. In a category C there are two classes of morphisms F and F ′, then
(1) F ⊆ r(F ′)⇔ F ′ ⊆ l(F)
(2) F ⊆ F ′ ⇒ l(F ′) ⊆ lF .
(3) F ⊆ F ′ ⇒ r(F ′) ⊆ rF .
(4) r(F) = r ◦ l ◦ r(F).
(5) l(F) = l ◦ r ◦ l(F).

Proof. We only prove the property of (4). Since all morphisms inF have the LLP wrt r(F),
then F ⊆ l ◦ r(F). This implies r ◦ l ◦ r(F) ⊆ r(F). Replacing F by r(F), we see it’s clear
that r(F) ⊆ r ◦ l(r(F)).

Definition 2.13. A weak factorization system in a category C is a couple (F ,G) of classes of
morphisms satisfying

(1) both F and G are closed under retraction.
(2) F ⊆ l(G)(⇔ G ⊆ r(F).
(3) any morphism f ∈ Mor(C) has a factorization f = p ◦ i where i ∈ F and p ∈ G.

In the most cases, we may require the factorization f = p◦i to be functorial and we will
explain what’s the meaning of functorial factorization system. In the factorization f = p ◦ i,
we use Rf and Lf to denote p and i respectively.

Definition 2.14. In a category C, a functorial factorization system is a weak factorization
system with a functor C2 → C3 from the category of arrows in C to the category of composable
pairs of arrows in C.

X A

Y B

f

α

g

β

7→

X A

Ef Eg

Y B

Lf

f

Lg

g

Rf

E(α,β)

Rg
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This definition actually means the replacement functors L and R are functorial. The
reason why we often require this property is practical. The method Quillen uses to con-
struct a model category is called small object arguments. From this method, we always
obtain a functorial factorization system, since every step of this method is functorial.
Now let us introduce this method which can also be found in [Cis19] Proposition 2.1.9,
[Hov99a] Theorem 2.1.14 and [Rie14] Theorem 12.2.2.

Definition 2.15. Given a cardinal κ, a non-empty partially ordered set E is κ-filtered if for any
family of its elements xj indexed by J with |J | < κ, then there exists an element x ∈ E such that
xj ≤ x for all j ∈ J .

Theorem 2.16 (Small Object Argument). Let C be a locally small category with small colimits,
equipped with a small set of morphisms F . If there exists a cardinal κ such that for any element
i : K → L in F , the functor

HomC(K,−) : C → Sets

commutes with colimits indexed by κ-filtered well-ordered sets, then the couple (l ◦ r(F), r(F))
forms a functorial factorization system and l ◦ r(F) is the smallest saturated class containing F .

Proof. Suppose κ exists and λ ≥ κ. Given any morphism f : X → Y in Mor(C), let D0 be
the class consisting of all commutative diagrams

K X = Z0

L Y

i f=f0

with i ∈ F . Then let Z1 be the pushout of∐
D0

K X = Z0

∐
D0

L Z1

Y

f0

∃!
f1

If i + 1 is the successor of i, using this method to obtain Zi+1 and fi+1 : Zi+1 → Y from
Zi and fi. If i is a limit number, define Zi = colim

j<i
Zj and this will induce a morphism
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fi : Zi → Y from fj’s. Finally we have the following factorization

X = Z0 Z1 · · · Zi = colim
j<i

Zj · · · Zλ

Y

f0

g

f1 fi
fλ

We prove g ∈ l ◦ r(F) and fλ ∈ r(F).
Given a lifting problem

K Zλ

L Y

i fλ

with i ∈ F . Since HomC(K,−) commutes with λ-colimits, K → Zλ = colim
j<λ

Zj factors

through some Zi.

K Zi Zi+1 · · · Zλ

L Y

i
fi

fi+1
fλ

But from the definition of Zi+1, we see i : K → L here belongs to Di, which means there
exists a lifting L→ Zi+1 whose composition with Zi+1 → Zλ gives the lifting L→ Zλ.

Next we should prove g ∈ l ◦ r(F). It’s obvious to see F ⊆ l ◦ r(F). From Theorem
2.10,l ◦ r(F) is saturated. But g : X → Zλ is obtained by “attaching cells” of

∐
Di

K →
∐
Di

L.

Therefore it’s clear g ∈ l ◦ r(F).
The statements in the previous paragraph obviously imply that the smallest saturated

class of F is contained in l ◦ r(F). On the other hand, assume f : X → Y belonging to
l ◦ r(F), then f = p ◦ i where i ∈ l ◦ r(F) and p ◦ r(F) which we haved proved above.
Note that from the proof, i is in the smallest saturated class of F . Since f has the LLP wrt
p, from Lemma 2.7 f is a retract of i hence belonging to the smallest saturated class of F
by Definition 2.8.

Finally we should prove this factorization talked above is functorial. Given a commu-
tative diagram

X X ′

Y Y ′

f f ′

58



then we have classed D0 and D′
0 for f and f ′ respectively. But it’s clear there is a map

D0 → D′
0 via compositions and this will induce a map Z1 → Z ′

1. And finally we will
obtain Zλ → Z ′

λ. Since in every step of this process the morphism is induced by the
universal property, it’s clear the final map Zλ → Z ′

λ is functorial.

Application 2.17. When proving Top has Quillen’s model category structure in Theorem
1.71, κ = ℵ0 since domains of morphisms in F there are compact spaces.

Now let us introduce the concept of model categories.

Definition 2.18. A model categoryM has three classes of morphisms which are denoted byCof ,
Fib andW , and are called cofibtrations, fibrations and weak equivalences respectively. Moreover
it satisfies the following axioms

(M1) M has all finite limits and colimits.

(M2) In the commutative diagram:

X Y

Z
h

f

g

If any two of the three morphisms f, g and h = g ◦ f are weak equivalences, then so is the
other. This property is called “two out of three”.

(M3) Cof, F ib andW are closed under retraction.

(M4) Cof ⊆ l(Fib ∩W) and Cof ∩W ⊆ l(Fib).

(M5) Every morphism f : X → Y inM can be factored as f = p◦i = q◦j such that i ∈ Cof∩W ,
p ∈ Fib, j ∈ Cof and q ∈ Fib ∩W .

Note that axioms (M4) and (M5) actually mean (Cof, F ib ∩ W) and (Cof ∩ W , F ib)
form two weak factorization systems. Morphisms in Cof ∩W (resp. Fib ∩W) are called
trivial cofibrations (resp. trivial fibrations). In a model category we use ∅ and ∗ to denote its
initial object and terminal object respectively. An object X ∈M is cofibrant (resp. fibrant)
if ∅ → X (resp. X → ∗) is a cofibration (resp. fibration).

2.2 Model Category Structure on Ch≥0(R)

In this section we will use Theorem 2.16 to prove Ch≥0(R) is a model category.
Ch≥0(R) denotes the full subcategory of Ch(R) consisting of all complexes of left R-

modules such that Cn = 0 for n < 0. In this section, we will sketch the proof that Ch≥0(R)
is a model category, which is much easier then the proof on Top. Actually Ch(R) is also
a model category and such structure on it is similar to the former.

f : C → D· in Ch≥0(R) is a weak equivalence (also called quasi-isomorphism) if it
is a homology isomorphism which means it induces isomorphisms between homology
groups. f is a fibration if fn : Cn → Dn for n > 0 are all surjective. Then cofibrations in
Ch≥0(R) can be defined as those maps having the LLP wrt all trivial fibrations.
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To be convenient, we denote the complex

· · · −→ 0 −→ · · · −→ 0 −→ R −→ 0 −→ ...

by R(n), where all terms are zero except the n-th term. And we define

R[n+ 1] := · · · −→ 0 −→ R
idR−−→ R −→ 0 −→ · · ·

where all terms are zero except the (n + 1)-th and n-th terms. For R(n) and R[n + 1] we
all assume n ≥ 0.

For any X ∈ Ob(Ch≥0(R)), it’s obvious to see

HomCh≥0(R)(R(n), X) ∼= HomR(R,Zn(X))

and
HomCh≥0(R)(R[n+ 1], X) ∼= HomR(R,Xn+1)

The process of the proof that Ch≥0(R) is a model category is the same as that of Top.
First we use lifting properties to characterize fibrations in Ch≥0(R), then trivial fibrations.
These results will play a central role in the proof of (M5).

Next we characterize the lifting property of fibrations.

Lemma 2.19. f : C → D in Ch≥0(R) is a fibration iff it has the RLP wrt all maps 0→ R[n+1]
for n ≥ 0.

Proof. The part of “⇒” is trivial, because R is projective and Cn+1 → Dn+1 is surjective.
For any map R→ Dn+1 , there exists a lifting R→ Cn+1.

“⇐”. For any y ∈ Dn+1 there is a map R→ Dn+1 such that 1 7→ y. But the map can be
lifted to R → Cn+1. Hence, there is some x ∈ Cn+1 such that fn+1(x) = y , which means f
is a fibration.

Especially 0 → R[n + 1] for n ≥ 0 have the LLP wrt all trivial fibrations and they are
hence cofibrations. But homology groups of R[n + 1] are all trivial, which means these
maps are trivial cofibrations.

Lemma 2.20. The map 0→ R(n) is a cofibration for all n ≥ 0.

Proof. If f : C → D is a trivial fibration, then there is a commutative diagram:

C1 C0 H0(C) 0

D1 D0 H0(D) 0

f1 f0 ∼=

Then by the four lemma or the cokernel part of the snake lemma, coker f0 = 0 and f0 is
surjective. Given a lifting problem

0 C

R(n) D

f
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we need to find a lifting R → Zn(C) to make the diagram commutative. From the fact
that R is projective, we only need to prove Zn(C)→ Zn(D) is surjective. At first we prove
fn(Bn(C)) = Bn(D). y ∈ Dn+1 , y = fn+1(x), x ∈ Cn+1 then ∂n+1(y) = ∂n+1(fn+1(x)) =
fn(∂n+1(x)). Hence, fn(Bn(C)) = Bn(D). Let y ∈ Zn(D), ȳ ∈ Hn(D). Because f∗ : Hn(C)→
Hn(D) is an isomorphism, ȳ = f∗(x̄) where x ∈ Zn(C). Hence, fn(x) = y + b where
b ∈ Bn(D). But b = fn(a), a ∈ Bn(C), then y = fn(x− a).

Now we can characterize the lifting property of trivial fibrations.

Lemma 2.21. f : C → D is a trivial fibration iff
(1) the map f0 is surjective in other words f has the RLP wrt 0→ R(0).
(2) it has the RLP wrt all maps g : R(n)→ R[n+ 1] for n ≥ 0, where gn = idR.

Proof. “⇒”. The condition (1) is proved in the Lemma 2.20 and we only need to prove the
condition (2). Given a lifting problem

R(n) C

R[n+ 1] D

g

x

f

y

where x ∈ Zn(C·) and y ∈ Dn+1 such that ∂n+1(y) = fn(x), to solve this problem we need
to find a suitable element u ∈ Cn+1 such that ∂n+1(u) = x and fn+1(u) = y.

fn is surjective for all n ≥ 0, fn+1(z) = y, z ∈ Cn+1 and fn(x) = ∂n+1fn+1(z) =
fn∂n+1(z). Hence x − ∂n+1(z) ∈ ker fn and ∂n(x − ∂n+1(z)) = 0. We denote ker f by K.
Then there is an exact sequence

0 −→ K −→ C −→ D −→ 0

which induces the long exact sequence

· · · → Hn+1(C)
∼=−→ Hn+1(D) −→ Hn(K) −→ Hn(C)

∼=−→ Hn(D·) −→ · · ·

and thenHn(K) will be trivial. Hence ∃k ∈ Kn+1, ∂n+1(k) = x−∂n+1(z). We let u = k+z ∈
Cn+1.

“⇒”. We prove f is a weak equivalence first. To prove f∗ : Hn(C) → Hn(D) is
surjective, we prove Zn(C)→ Zn(D) is surjective.

R(n) C

R[n+ 1] D

0

f

y

x

The diagram above implies y ∈ Dn+1 , ∂n+1(y) = 0 ⇔ y ∈ Zn+1(D), x ∈ Cn+1 , fn+1(x) =
y, and ∂n+1(x) = 0 ⇔ x ∈ Zn+1(C) . Hence, Zn+1(c) → Zn+1(D) is surjective. That
Z0(C) = C0 → D0 = Z0(D) is surjective is from condition (1) . If f∗(x̄′) = f∗(x̄

′′) where
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x′, x′′ ∈ Zn(C), then fn(x′) = fn(x
′′) + ∂n+1(y). Let x = x′ − x′′, fn(x) = ∂n+1(y). There will

be a commutative diagram:
R(n) C

R[n+ 1] D

x

f

y

z

where z ∈ Cn+1 , x = ∂n+1(z) which means x̄ = 0 and x̄′ = x̄′′. Hence f∗ is an isomorphism
and f is a weak equivalence. Finally we have the following exact sequence:

Zn+1(C) Cn+1 Zn(C) Hn(C)

Zn+1(D) Dn+1 Zn(D) Hn(D)

fn+1

∂n+1

∼=

∂n+1

By the four lemma fn+1 : Cn+1 → Dn+1 is surjective.

From Lemma 2.19 and 2.21 we know Fib = r(R[n+1]) and Fib∩W = r
(
R(0), R(n)→

R[n]
)
. Next we can prove the axiom (M5) in Ch≥0(R) using Quillen’s small object argu-

ment.

Corollary 2.22. Every chain map f : C → D has two factorizations:
(1) f = p ◦ i , where p ∈ Fib, and i ∈ l(Fib) is both a monomorphism and a weak equivalence.
Especially i is a trivial cofibration.

(2) f = q ◦ j where q ∈ Fib ∩W and j ∈ l(Fib ∩W) is a monic cofibration.

Proof. Choose κ = ℵ0.
(1). For the class of morphisms 0 → R[n + 1], their domains are all 0 and the repre-

sentable functor HomCh≥0(R)(0,−) is zero hence commuting with arbitrary colimits, which
means Theorem 2.16 is valid here. In every step Zi → Zi+1 is monic and then the fi-
nal morphism X = Z0 → Zκ is hence monic. And note that the homology functor Hn

commutes with directed limits which is a standard exercise in any textbook about ho-
mological algebra (actually it comes from the fact that directed limits is exact). Then
Hn(Zκ) ∼= colim

i≤κ
Hn(Zi). Moreover since Hn commutes with direct sums,

Zi+1 = Zi ⊕ (⊕Di
R[k + 1])⇒ Hn(Zi+1) = Hn(Zi)⊕ (⊕Di

Hn(R[k + 1])) = Hn(Zi)

We conclude Hn(Zκ) = Hn(Z0) and in this factorization i is a monic weak equivalence.
(2). For any chain complex X , we know

HomCh≥0
(R(n), X) ∼= HomR(R,Zn(X)) ∼= Zn(X)

The functor Zn(−) commutes with all directed limits and hence Theorem 2.16 is valid here
as well. The reason why j is monic is the same as that of i.

(M5) has been proved and we can use it to prove (M4) that every trivial cofibration
has the LLP wrt all fibrations, Cof ∩W ⊆ l(Fib).
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Corollary 2.23.
(1) Every cofibration is a monomorphism.
(2) Every trivial cofibration has the LLP wrt all fibrations.

Proof. (1). If j : C → D is a cofibration, we prove all jn’s are injective. The chain complex

· · · −→ 0 −→ Cn
idCn−−→ Cn −→ 0 −→ · · ·

where only (n + 1)-th and n-th terms are nontrivial, is simply denoted by Cn[n + 1] for
convenience. Then Cn[n+ 1]→ 0 is a trivial fibration. Hence the lifting problem

C Cn[n+ 1]

D 0

α

j g

where αn+1 = ∂n+1, αn = idCn has a solution g. gn ◦ jn = idCn therefore jn is injective.
(2). Now we assume j : C → D is a trivial cofibration. Then it factors as j = p ◦ i :

C → E → D where i ∈ l(Fib) is a trivial cofibration and p is a trivial fibration (the first
part of Corollary 2.22).

Given a lifting problem
C A

D B

j

g

where A→ B is a fibration, we solve it as follows:

C C A

E

D D B

id

i

j

i

p
g◦p

id g

Hence j has the LLP wrt all fibrations.

Now we only need to prove (M3). Since cofibrations and fibrations are all charac-
terised by lifting properties (the former is by definition and the latter is from Lemma
2.19), from Theorem 2.10 and Corollary 2.11 they are stable under retraction. As for weak
equivalences, we can use homology functors Hn and isomorphisms are stable under re-
traction.

Corollary 2.24. With fibrations being maps which are surjective for n > 0 and weak equivalences
being homology isomorphisms, Ch≥0(R) is a model category.

In the following we want to study cofibrations further.
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Lemma 2.25. A chain complex C is cofibrant iff all Cn’s are projective R-modules.

Proof. “⇒”. Assume A → B is surjective and we obtain a trivial fibration A[n + 1] →
B[n+ 1] where

A[n+ 1] := · · · −→ 0 −→ A
idA−−→ A −→ 0 −→ · · ·

and B[n+ 1] is defined similarly. Then the diagram

0 A[n+ 1]

C B

is solved as
Cn

A B 0

Thus Cn is projective.
“⇐”. Assume Cn’s are all projective and f : A → B is a trivial fibration. K = ker f ,

then Hn(K) = 0. The solution of a lifting problem can be constructed by induction using
the property of projective modules. The details are left to readers.

Corollary 2.26. j : C → D is a cofibration iff all maps jn for n ≥ 0 are injective and the cokernels
coker jn are projective R-modules.

Proof. “⇒”. If j is a cofibration, then D/j(C) will be cofibrant. Given a trivial fibration
A→ B

C 0 A

D D/j(C) B

j

Then the conclusion follows from the Lemma A.1.6.
“⇐”. 0→ Cn → Dn → Dn/Cn → 0 where Dn/Cn is projective, then Dn

∼= Cn⊕Dn/Cn.
C → C and 0 → D/j(C) are cofibrations. Therefore j : C ⊕ 0 → C ⊕ D/j(C) ∼= D is a
cofibration.

Dually in the category of cochains Ch≥0(R) there is a model category structure as
well, in which weak equivalences are quasi-isomorphisms, cofibrations are monomor-
phisms for positive terms and fibrations are epimorphisms whose kernels consist of in-
jective modules.

Therefore there are two model category structures in Ch(R). One is the projective
model category structure and the other is the injecture one. In the projective model cate-
gory of Ch(R), weak equivalences are quasi -isomorphisms, fibrations are epimorphisms
and cofibrations are those maps having the left lifting property with respect to all trivial
fibrations. Note in this case even though for every cofibrant chain complex A, An will be
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a projective R-module for all n and conversely any bounded below complex of projective
R-modules is cofibrant6, there may exist unbounded complex of projective R-modules,
which isn’t cofibrant. The following example comes from [Hov99a] Remark 2.3.7.

Example 2.27. Let R be the first order extension of k which means R = k[x]/(x2), where
k is a field. Then dimkR = 2. Its multiplication is defined as (a1 + b1x) · (a2 + b2x) =
a1a2 + (a1b2 + a2b1)x. The field k will be an R-module, with (a+ bx)c = ac.

Now we consider the complex

A· := · · · −→ R
·x−→ R

·x−→ R −→ · · ·

where ·x(a + bx) = (a + bx)x = ax. It’s obvious to see ker(·x) = kx = im(·x). Hence A
has trivial homology groups. Note that all terms in A are R, which is a free R-module,
hence projective. We let X = R(0) and Y = k(0) centered at the 0-th position. Then there
is a fibration f : X → Y , f0(a + bx) = a, which is an R-morphism. Given a morphism
g : A→ Y , g0(a+ bx) = a and gn = 0 for n ̸= 0. Then g is a map between chain complexes.
If A is cofibrant, 0→ A is trivial cofibration and the following lifting has a solution:

0 X

A Y

f

g

h

Then h0(1) = 1 + ax for some a ∈ k, and h0(x) = x · h0(1) = x · (1 + ax) = x. But since
h0 ◦ (·x) = 0, h0(x) = 0 a contradiction! Therefore such lifting h doesn’t exist and A is not
cofibrant.

The injective model category structure on Ch(R) can be described naturally on Ch•(R)
which is the category of cochain complexes. In Ch•(R) weak equivalences are quasi-
isomorphisms, cofibrations are monomorphisms and fibrations are those maps having
the RLP wrt all trivial cofibrations. Similarly for any fibrant object A, An is an injective R-
module for all n ∈ Z and any bounded below complex of injective R-modules is fibrant.
But it’s not ture that the complex of injective R-modules is fibrant.

What’s more, for an abelian category A if it’s a Grothendieck category or has enough
injective objects, Ch•(A) will have the injective model category structure described above.
This technical fact is proved in the paper [Hov99b].

2.3 The Homotopy Theory of Model Categories

Before introducing the homotopy theory for a model categoryM, we want to study the
internal structure ofM first.

Lemma 2.28. For a weak factorization system (see Definition 2.13) (F ,G), F = l(G) and G =
r(F).

6See [Hov99a] Lemma 2.3.6
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Proof. We only need to prove F = l(G) since the other can be proved in the opposite
category Cop. Assume f ∈ l(G) and f = p ◦ i where i ∈ F , p ∈ G. f has the LLP wrt p and
from Lemma 2.7 we conclude f is a retraction of i which means f ∈ F .

Corollary 2.29. In a model categoryM,
(1) the cofibrations are exactly those maps having the LLP wrt all trivial fibrations
(2) the trivial cofibrations are exactly those maps having the LLP wrt all fibrations
(3) the fibrations are exactly those maps having the RLP wrt all trivial cofibrations
(4) the trivial fibrations are exactly those maps having the RLP wrt all cofibrations

Proof. Apply Corollary 2.28.

This corollary means for a given category M if a certain model category structure
exists, then it can be characterized byW and Fib orW and Cof . But if we only know Cof
and Fib, then we will also know Cof ∩W and Fib ∩W which are characterized by their
lifting properties. And we can define a weak equivalence to be a composition p ◦ i where
i ∈ Cof ∩ W and p ∈ Fib ∩ W . Therefore M can also be determined by Cof and Fib.
There is a refined version for Corollary 2.29.

Proposition 2.30. In a model categoryM,
(1) a cofibration is a weak equivalence iff it has the LLP wrt all fibrations between fibrant objects
(2) a fibration is a weak equivalence iff it has the RLP wrt all cofibrations between cofibrant objects.

Proof. We only prove (1) since the second one can be proved inMop. “⇒” is clear and thus
we prove the part of “⇐”. Assume a cofibration u : A→ B has the LLP wrt all fibrations
between fibrant objects. First we choose a fibrant replacement j : B → B′ where j is a
trivial cofibration and B′ is fibrant. Then we factor j ◦ u as

j ◦ u : A
i−→ A′ p−→ B′

where i is a trivial cofibration and p is fibration which imply A is especially fibrant. Then
we have the square

A A′

B B′

u

i

p

j

h

h ◦ u = i and p ◦ h = j are all isomorphisms in the homotopy category Ho(M). Hence in
Ho(M), h has a left inverse and a right inverse, thus an isomorphism. Then according to
??, h is a weak equivalence and therefore u is a weak equivalence.

We also has another characterization for M which is useful when comparing with
different models for∞-category. We advise readers to read this proposition after reading
all contents of this section, since in this proof we will use theorems below freely.

Proposition 2.31. For a model categoryM, its model category structure is determined by cofi-
brations and fibrant objects or fibrations and cofibrant object.
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Proof. Since two statements are dual, it’s enough to prove the first one. For any object
X ∈ Ob(M), we have the decomposition ∅ → X ′ pX−→ X where X ′ is cofibrant and pX is a
trivial fibration. For any map u : X → Y we have the square

∅ Y ′

X ′ Y

pY

u◦pX

u′

which permits the existence of the diagram

X ′ X

Y ′ Y

u′

pX

u

pY

Note that u is weak equivalence iff u′ is a weak equivalence. Therefore weak equivalences
between cofibrant objects will determine this model category structure, since from Cof
we know Fib ∩W and pX , pY are all trivial fibrations. u′ is a weak equivalence iff it’s an
isomorphism in Ho(M). By Yoneda’s lemma, it’s a weak equivalences iff for any other
object A, u′∗ : HomHo(M)(Y

′, A) → HomHo(M)(X
′, A) is an isomorphism. But by ?? the full

subcategory of Ho(M) consisting of fibrant objects is equivalent to Ho(M). Therefore we
could suppose A is fibrant. But by?? this means

HomHo(M)(X
′, A) = [X ′, A] = HomM(X ′, A)/ ∼

where the equivalence relation is right homotopy or left homotopy. Here we focus on the
left homotopy. But we can factor (id, id) : X ′∐X ′ → X ′ as

X ′
∐

X ′ i−→ X ′ ⊗ I p−→ X ′

where i is a cofibration and p is a trivial fibration. This factorization will make the cylin-
der object X ′ ⊗ I for the left homotopy relation fixed, which means this left homotopy
relation is totally determined by cofibraions and trivial fibrations. Hence we conclude
HomHo(M)(X

′, A) is determined. And finally weak equivalences between cofibrant objects
are determined.

For a model category M, its homotopy theory or homotopy category is defined to be
Ho(M) := M[W−1] the localization respect to weak equivalences. In the following our
main task is to study structures of Ho(M) in detail.

Definition 2.32. A path object for Y ∈ Ob(M) is a commutative diagram:

Y I

Y Y × Y

(p0,p1)=p

∆

s ∼

where s is a weak equivalence, ∆ = (idY , idY ) and (p0, p1) is a fibration.
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Always we simply use the symbol Y I to denote a path object. According to the axiom
(M5) of model categories, there is a natural path object for Y such that s will be a trivial
cofibration.

Definition 2.33. f, g : X → Y are two maps inM. A right homotopy between f and g is a
commutative diagram:

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

The right part of the diagram above is a path object. We denote this relation by f ≃r g.

Example 2.34. In Ch≥0(R), the concept of chain homotopies is a special case of right
homotopies.

Given a chain complex C , the path object is defined to be CI such that CI
n = Cn⊕Cn⊕

Cn+1 for n > 0 and

CI
0 = {(x, y, z) ∈ C0 ⊕ C0 ⊕ C1|(x− y) + ∂1(z) = 0}

∂n(x, y, z) = (∂n(x), ∂n(y), (−1)n(x− y) + ∂n+1(z)). We claim CI is a path object.
We define a new chain complex C ′ as follows: C ′

n = Cn ⊕ Cn+1 for n > 0 and

C ′
0 = {(x, z) ∈ C0 ⊕ C1|x+ ∂1(z) = 0}

∂n(x, z) = (∂n(x), (−1)nx+ ∂n+1(z)). If ∂n(x, z) = 0, then ∂n(x) = 0 and (−1)nx+ ∂n+1(z) =
0. x = (−1)n+1∂n+1(z), ∂n+1((−1)n+1, 0) = ((−1)n+1∂n+1z, (−1)n+1(−1)n+1z) = (x, z).
Hence,C ′ → 0 is a trivial fibration. There is a chain map α : CI → C ′, α(x, y, z) = (x−y, z),
which is an epimorphism and ker α ∼= C· . Then we have the following pullback diagram:

CI C ′

C ⊕ C C

α

p p′

β

where p(x, y, z) = (x, y), p′(x, z) = x and β(x, y) = x−y. Obviously p′ is a fibration. Hence
p is also a fibration. We have two exact sequences

0 C CI C ′ 0

0 C C ⊕ C C 0

s

id

α

p p′

∆ β

where s(x) = (x, x, 0). There is a long exact sequence

· · · −→ 0 = Hn+1(C
′) −→ Hn(C) −→ Hn(C

I) −→ 0 = Hn(C
′) −→ · · ·

Hence Hn(C) ∼= Hn(C) and s is a weak equivalence.
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For any two chain map f, g : D → C such that there is a usual chain homotopy
t : f ≃ g, tn : Dn → Cn+1 and ∂n+1tn + tn−1∂n = f − g. We define h : C → CI , hn(x) =
(fn(x), gn(x), (−1)n+1tn(x)). It’s actually a chain map. ∂h(x) = (∂f(x), ∂g(x), (−1)n+1(f(x)−
g(x)) + (−1)n+1∂t(x)) = (∂f(x), ∂g(x), (−1)nt∂(x)) = h∂(x). p ◦ h = (f, g). Hence, h is a
right homotopy from f to g.

Conversely, if h is a right homotopy from f to g, we write h as (f, g, t). Because h is a
chain map, (−1)n(f(x)− g(x)) + ∂t(x) = t∂(x). Then t′n = (−1)n+1tn is a chain homotopy
from f to g in the usual sense.

Another example is in Top, see Example 1.23. There is a dual concept for right homo-
topies.

Definition 2.35. A cylinder object for X ∈M is a commutative diagram:

X
∐
X X

X ⊗ I

∇

(i0,i1) σ∼

where∇ = (idX , idX), i is a cofibration and s is a weak equivalence. For any maps f, g : X → Y ,
a left homotopy h : f ≃l g is defined to be the following commutative diagram:

Y X
∐
X X

X ⊗ I

(f,g)

i

∇

h
σ∼

In Top for CW-complexes, the concept of homotopies is a special case of left homo-
topies.

Example 2.36. We assume X is a CW-complex and X ⊗ I = X × I where I = [0, 1]. Then
X is a strong deformation retract of X × I and σ is especially a weak homotopy equivalence.
(X

∐
X,X×I) is a relative CW-complex (see [Hat02] Theorem A.6). Hence i : X

∐
X ↪→ X×I

is a cofibration according to the Proposition 1.80.

Lemma 2.37. LetM be a model category,
(1) if Y is fibrant, then the relation of right homotopies in HomM(X, Y ) is an equivalence relation.
(2) ifX is cofibrant, then the relation of left homotopies in HomM(X, Y ) is an equivalence relation.

Proof. Axioms of a model category are all dual descriptions, which meansMop is also a
model category with cofibrations becoming fibrations and fibrations becoming cofibra-
tions. Hence we can just prove the first statement.

Assume Y is fibrant, which means Y → ∗ is a fibration. InM , for any object X , X ×∗
is canonically isomorphic with X . Isomorphisms are both trivial cofibrations and trivial
fibrations. Then the fact fibrations are preserved under products implies X × Y → X is
a fibration. Hence pr0, pr1 : Y × Y → Y are fibratsions. For any path object Y I with a
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fibration p : Y I → Y × Y , pi = pri ◦ p is a fibration for i = 0, 1. Moreover, p ◦ s = ∆,
pi ◦ s = pri ◦∆ = idY . Then pi is a trivial fibration.

For any f : X → Y , the following diagram proves f ≃r f .

Y I

X Y Y × Y

p

f

s◦f s
∼

∆

For any map f, g : X → Y and h : f ≃r g. There is an isomorphism u = (pr1, pr0) :
Y × Y → Y × Y . If p : Y I → Y × Y is the path object for the right homotopy h : f ≃r g,
then u ◦ p is the path object for h : g ≃r f .

f1, f2, f3 : X → Y and h1 : f1 ≃r f2 , h2 : f2 ≃r f3.

Y I

X Y × Y Y

p

(f1,f2)

h1

∆

s∼

Y J

X Y × Y Y

q

(f2,f3)

h2

∆

s′∼

We prove there is a right homotopy:

Y I ×Y Y
J

X Y × Y Y

g

(f1,f3)

h

∆

s′′∼

From h1, h2 we know p0h1 = f1, p1h1 = f2 = q0h2, q1h2 = f3. Then we have the following
pullback diagram:

X

Y I ×Y Y
J Y J

Y I Y

h

h2

h1 q∗

p∗

q0

p1

where q0 is a trivial fibration⇒ q∗ is also a trivial fibration.

Y

Y I ×Y Y
J Y J

Y I Y

s′′

s′

s
q∗

p∗

q0

p1
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q∗ ◦ s′′ = s is a weak equivalence⇒ s′′ is a weak equivalence. Now we only need to find
the suitable g. We prove the following diagram is a pullback:

Y I ×Y Y
J Y J

Y I × Y Y × Y

(q∗,q1p∗)

p∗

(q0,q1)

p1×idY

(p1×idY )◦(q∗, q1p∗) = (p1q∗, q1p∗) = (q0p∗, q1p∗) = (q0, q1)◦p∗. The diagram is commutative.
Given (u, v) : Z → Y I × Y,w : Z → Y J such that (p1 × idY ) ◦ (u, v) = (q0, q1) ◦ w. Then
p1u = q0w, v = q1w. From p1u = q0w, there is a unique θ : Z → Y I ×Y Y J such that
q∗θ = u, p∗θ = w. q1p∗θ = q1w = v. Hence, (q∗, q1p∗) ◦ θ = (u, v). This proves the diagram
above is actually a pullback.

We let g = (p0× idY ) ◦ (q∗, q1p∗) = (p0q∗, q1p∗). (q∗, q1p∗) is the pullback of q = (q0, q1)⇒
(q∗, q1p∗) is a fibration. p0, idY are fibrations⇒ p0×idY is a fibration. Hence g is a fibration.

g◦h = (p0q∗, q1p∗)◦h = (p0q∗h, q1p∗h) = (p0h1, q1h2) = (f1, f3) and g◦s′′ = (p0q∗, q1p∗)s
′′ =

(p0q∗s
′′, q1p∗s

′′) = (p0s, q1s
′) = (idY , idY ) = ∆.

Lemma 2.38.
(1) If Y is fibrant, X ⊗ I is a fixed cylinder object for X and f, g : X → Y are right homotopic,
then there is a left homotopy:

Y X
∐
X

X ⊗ I

(f,g)

iH

(2) If X is cofibrant, Y I is a fixed path object for Y , and f, g : X → Y are left homotopic, then
there is a right homotopy:

Y I

X Y × Y

p

(f,g)

H

Proof. The two statements are dual and we prove the first one. Given the right homotopy
h : f ≃r g :

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

and the fixed cylinder object:

X
∐
X X

X ⊗ I

∇

i σ∼
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Note that Y is fibrant⇒ p0 : Y × Y → Y is a trivial fibration.

X
∐
X Y I Y

X ⊗ I Y

(sf,h)

i p0

p1

fσ

θ

p0 ◦ (sf, h) = (p0sf, p0h) = (f, f) = fσi. Let H = p1 ◦ θ. H ◦ i = p1θi = p1 ◦ (sf, h) =
(p1sf, p1h) = (f, g).

Corollary 2.39. If X is cofibrant and Y is fibrant, then for any maps f, g : X → Y , f ≃r g ⇔
f ≃l g for a fixed X ⊗ I ⇔ f ≃r g for a fixed Y I ⇔ f ≃l g.

In HomM(X, Y ) where X is cofibrant and Y is fibrant, the two notions of right ho-
motopy and left homotopy coincide and we simply use the symbol f ≃ g to denote
this homotopy relation. The homotopy class of maps between X and Y is denoted by
[X, Y ] = HomM(X, Y )/ ∼. IfMc andMf are the full subcategories ofM with all objects
cofibrant and fibrant respectively, then we can define a functor [−,−] :Mop

c ×Mf → Sets.
The fact that [−,−] is well defined and actually a functor can be proved using the follow-
ing lemma.

Lemma 2.40. For any objects X, Y ∈ Ob(M) and morphisms f, g : X → Y ,
(1) if f ≃l g then for any morphism t : Y → Y ′, tf ≃l tg.
(2) if f ≃r g then for any morphism s : X ′ → X , fs ≃r gs.

This lemma is trivial. In general, given two arbitrary morphisms f, g : X → Y and
t : Y → Y ′, we can’t conclude tf ≃r tg from f ≃r g. But there is a weaker theorem7, which
states that inMf , f ≃r g, for arbitrary t : Y → Y ′ there exsits a trivial fibration especially
a weak equivalence u : X ′ → X such that tfu ≃r tgu.

Lemma 2.41. For any objects X, Y ∈ Ob(M) and morphisms f, g : X → Y ,
(1) if Y is fibrant and f ≃l g, then for any morphism s : X ′ → X , fs ≃l gs.
(2) if X is cofibrant and f ≃r g then for any morphism t : Y → Y ′, tf ≃r tg.

Proof. We only prove (2). Given a right homotopy h′ : f ≃r g,

Y I′

X Y × Y Y

p′

(f,g)

h′

∆

s′∼

Decompose s′ as
Y

s−→ Y I p−→ Y I′

7See [Bro73] P423 Proposition 1.
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such that s is trivial cofibration and p is a fibration. p′◦p is a fibration and Y I is thus a path
object. Since p ◦ s = s′ is a weak equivalence, p is a trivial fibration. Then the following
lifting problem has a solution since X is cofibrant.

∅ Y I

X Y I′

p

h′

h

Then h : f ≃r g with the map s : Y → Y I being a trivial cofibration. Here we simply write
p : Y I → Y × Y for p′ ◦ p above and use p′, s′ to denote maps Y ′I → Y ′× Y ′ and Y ′ → Y

′I

respectively.

Y Y
′I

X Y I Y ′ × Y ′

s

s′t

p′

h (t,t)◦p

k

k ◦ h : tf ≃r tg.

For any two objects X, Y ∈ Ob(M), πl(X, Y ) (resp. πr(X, Y )) denotes the quotient
set Hom)M(X, Y )/ ∼ where the equivalence relation is generated by left (resp. right)
homotopy. f ∼l g in HomM(X, Y ) if there is a long sequence of left homotopy connecting
them, which means f ≃l f1 ≃l f2 ≃l · · · ≃l g.

Corollary 2.42. For any objects X, Y ∈ Ob(M) and morphisms f, g : X → Y ,
(1) if Y is fibrant, then the composition πl(X ′, X)× πl(X, Y )→ πl(X ′, Y ) is well defined.
(2) if X is cofibrant, then the composition πr(X, Y )× πr(Y, Y ′)→ πr(X, Y ′) is well defined.

We can define the homotopy category πMc (resp. πMf ) to be the quotient category of
Mc (resp. Mf ) where the equivalence relation is the right (resp. left) homotopy relation
and HomπMc(X, Y ) = πr(X, Y ). Then from Corollary 2.42 this definition is well defined.
πMcf is in the usual sense with HomπMcf

(X, Y ) = [X, Y ] since X, Y are both cofibrant
and fibrant.

Next we prove the modern version of Whitehead’s theorem whose classical version
says a weak homotopy equivalence between CW-complexes is homotopy equivalence.

Theorem 2.43 (Whitehead). If X, Y are both cofibrant and fibrant, then every weak equivalence
f : X → Y is a homotopy equivalence.

Proof. According to (M5) of model categories, f : X
i−→ Z

p−→ Y where i is a trivial
cofibration and p is trivial fibration. We prove Z is both cofibrant and fibrant first.

Let A→ B be a trivial cofibration:

A Z Y

B ∗ ∗

p
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where Y is fibrant and p is trivial fibration. Hence Z is fibrant. Dually, Z is cofibrant.
If p and i are homotopy equivalences, there are q : Y → Z, j : Z → X such that

pq ≃ idY , qp ≃ idZ , ij ≃ idZ , ji ≃ idX . Then

fjq = pijq ≃ pidZq ≃ pq ≃ idY

and
jqf = jqpi ≃ jidZi ≃ ji ≃ idX

which means f is a homotopy equivalence as well. Now we need to prove every trivial
fibration is a homotopy equivalence and it’s dual to prove every trivial cofibration is a
homotopy equivalence. Hence we can just assume f is a trivial fibration.

Since Y is cofibrant,
∅ X

Y Y

f

idY

g

then fg = idY , and we only need to prove gf ≃ idX .
Given a cylinder object,

X
∐
X X

X ⊗ I

∇

i σ∼

there exists the following homotopy h : gf ≃l idX since f is a trivial fibration and i is
cofibration.

X
∐
X X

X ⊗ I Y

i

(gf,idX)

f

fσ

h

where f ◦ (gf, idX) = (fgf, g) = (f, f) = fσi.

In Top every space is fibrant and every CW-complex is cofibrant. Hence the classical
Whitehead’s theorem tells us every weak homotopy equivalence between CW-complexes
is actually a homotopy equivalence. And in Ch≥0(R), every chain complex is fibrant and
every chain complex with every term projective is cofibrant. Then, we can conclude two
projective resolutions of a given R-module is chain homotopic.

The converse of Whitehead’s theorem is also ture. If f is a homotopy equivalence then
f is a weak equivalence. We will prove it later.

Now for every object X inM, we find a suitable object RQX which is both cofibrant
and fibrant and is weak equivalent with X . At first, we use the axiom (M5) to decompose
∅ → X as ∅ −→ QX

pX−→ X such that QX is cofibrant and pX is a trivial fibration. Then
we decompose QX → ∗ as QX jX−→ RQX −→ ∗ such that jX is a trivial cofibration and

74



RQX is fibrant. In fact, because QX is cofibrant, RQX is cofibrant automatically. Hence
RQX is both cofibrant and fibrant.

According to the descriptions above, we can find mapsX pX←− QX
jX−→ RQX for every

X ∈M such that:

(1) pX is a trivial fibration, jX is a trivial cofibration, QX is cofibrant and RQX is both
cofibrant and fibrant.

(2) if X is cofibrant, QX = X, pX = idX . And if QX is fibrant, RQX = QX, jX = idQX .

From the condition (2), we can conclude Q(RQX) = RQX , Q(QX) = QX , (RQ)(RQX) =
RQX , (RQ)(QX) = RQX .

If in our model category the weak factorization system is functorial, then we can find
functorial replacement functors Q and R. But without this assumption the functorial
property is only up to homotopy.

Lemma 2.44. For any map f : X → Y , there will exist a commutative diagram:

X QX RQX

Y QY RQY

f

pX

f1

jX

f2

pY jY

Moreover f2 is unique up to homotopy.

Proof. Since QX is cofibrant and pY is a trivial fibration,

∅ QY

QX Y

pY

f◦pX

f1

Since RQY is fibrant and jX is a trivial cofibration,

QX RQY

RQX ∗

jX

jY ◦f1

f2

Now we prove the uniqueness. If there is another commutative diagram (f ′
1, f

′
2), we first

prove f1 ≃l f
′
1. Given a cylinder object

QX
∐
QX QX

QX ⊗ I

∇

I σ∼
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since i is a cofibration and pY is a trivial fibration,

QX
∐
QX QY RQY

QX ⊗ I QX Y

(f1,f ′
1)

i pY

jY

σ fpX

(6)

where pY ◦ (f1, f ′
1) = (pY f1, pY f

′
1) = (fpX , fpX) = fpXσi. From f1 ≃l f

′
1, we conclude

jY f1 ≃l jY f
′
1. Hence f2jX ≃l f

′
2jX . Since QX is cofibrant and RQY is fibrant, f2jX ≃r f

′
2jX

and we have the following homotopy diagram:

RQY I

QX RQY ×RQY

ph

(f2jX ,f ′
2jX)

and since p is a fibration and jX is a trivial cofibration

QX RQY I

RQX RQY ×RQY

jX

h

pH

(f2,f ′
2)

Hence f2 ≃ f ′
2 .

According to the Lemma 2.44, we can define a functor RQ : M → πMcf such that
X 7→ RQX and f 7→ [RQf ] = [f2]. From the proof above we know that the functor
Q :M→ πMc is also well defined, since according to Lemma 2.38 (2) the left homotopy
f1 ≃l f

′
1 can be changed into a right homotopy. Similarly there is a functor R :M→ πMf

as well. Therefore we say the factorization system in a model category is functorial up to
homotopy.

Now we can use the funtorRQ :M→ πMcf to obtain the homotopy category Ho(M)
ofM. Objects of Ho(M) are the same asM and

HomHo(M)(X, Y ) = HomπMcf
(RQX,RQY ) = [RQX,RQY ]

From the uniqueness of f2 up to homotopy, there is a functor

γ :M→ Ho(M), γ(X) = X, γ(f) = [RQf ] = [f2]

and the inclusion functor γ̄ : πMcf → Ho(M) is fully faithful and essentially surjective
hence an equivalence between categories.

What’s more, Whitehead’s theorem tells us that if f is weak equivalence, then γ(f) is
an isomorphism. In the following, we will prove γ is actually a localization functor and
Ho(M) is the category of fractions ofM with respect to the setW of weak equivalences.
Moreover γ(f) is an isomorphism if and only if f is a weak equivalence.

76



Proposition 2.45. If we assume X is cofibrant and Y is fibrant, then there is a bijection [X, Y ] ∼=
HomHo(M)(X, Y ) = [RQX,RQY ].

Proof. Y is fibrant ⇒ QY is fibrant. Then QX = X , RQX = RX , RQY = QY , pX =
idX ,jY = idQY .

γ : HomM(X, Y ) → [RQX,RQY ] = [RX,QY ]. Given any map f2 : RX → QY , let
f1 = f2 ◦ jX and f = pY ◦ f1, then γ(f) = [f2] which means γ is surjective.

Next, we prove γ factors through [X, Y ]. If f, g : X → Y and f ≃ g, we prove f2 ≃ g2.
Since X is cofibrant and pY is a trivial fibration:

∅ QY

X Y

pY

f/g

f1

g1

where f1, g1 are liftings of f, g respectively.
Given a left homotopy h : f ≃l g, we have a lifting

X
∐
X QY

X ⊗ I Y

i

(f1,g1)

pY

h

where h ◦ i = (f, g). Hence f1 ≃ g1. The same process will imply f2 ≃ f2. Then γ can be
factored as

HomM(X,X) −→ [X, Y ]
γ′
−→ [RQX,RQY ] = [RX,QY ]

Conversely if f2 ≃ g2, then f1 = f2 ◦ jX ≃ g2 ◦ jX = g1 and f = pY ◦ f1 ≃ pY g1 = g .
Hence γ is a bijection.

Theorem 2.46. γ : M → Ho(M) is the localization functor for the category of fractions
M[W−1], which means for any functor F :M→ D taking weak equivalences to isomorphisms,
there exists a unique functor F∗ : Ho(M)→ D such that F∗ ◦ γ = F .

Proof. Assume f, g : X → Y inM, if f ≃r g or f ≃l g, then F (f) = F (g). The proofs are
the same. Hence we can just assume h : f ≃r g. s : Y → Y I is a weak equivalence hence
F (s) an isomorphism. pi ◦ s = idY ⇒ F (pi) = F (s)−1 and

f = p0 ◦ h, g = p1 ◦ h⇒ F (f) = F (g) = F (s)−1F (h)

On objects F∗ is easily defined, for Ho(M) has the same objects asM. Now suppose
[f ] ∈ HomHo(M)(X, Y ) = [RQX,RQY ] where f : RQX → RQY .

X QX RQX

Y QY RQY

pX jX

f

pY jY
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where pX , pY , jX , jY are all weak equivalences. Thus

F (X) F (QX) F (RQX)

F (Y ) F (QY ) F (RQY )

∼ ∼

F (f)

∼ ∼

We define
F∗([f ]) = F (pY ) ◦ F (jY )−1 ◦ F (f) ◦ F (jX) ◦ F (pX)−1

If [f ] = [g], f ≃ g then F (f) = F (g). Hence F∗ is well defined. It’s obvious to see F∗
is actually a functor. Now we need to prove F∗ ◦ γ = F . Given a map f : X → Y ,
γ(f) = [RQf ] = [f2].

X QX RQX

Y QY RQY

f

pX

f1

jX

f2

pY jY

Take F in this diagram and we obtain:

F (X) F (QX) F (RQX)

F (Y ) F (QY ) F (RQY )

F (f) F (f1)

∼ ∼

F (f2)

∼ ∼

It’s obvious to see F∗γ(f) = F∗([f2]) = F (f). Then we should prove F∗ is unique.
Given f : X → Y in Ho(M) that is [f ] ∈ [RQX,RQY ]. Since

RQ(QX) = RQX, RQ(RQX) = RQX

f can also represent an element of HomHo(M)(QX,QY ) and of HomHo(M)(RQX,RQY ).
Consider the following diagram

QX Q(QX) = QX RQ(RQX) = RQX

X QX RQX

pX

id

id

jX

id

pX jX

Hence γ(pX) = [idRQX ].

QX QX RQX

RQX RQX RQX

jX

id

jX

jX

id

id id
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Then γ(jX) = [idRQX ]. Therefore we have the following commutative diagram in the
category Ho(M):

X QX RQX

Y QY RQY

[f ]

γ(pX) γ(jX)

[f ] [f ]

γ(pY ) γ(jY )

[f ] ∈ [RQX,RQY ], if f : RQX → RQY inM, then γ(f) = [f ]. F = F∗ ◦ γ forces

F∗([f ]) = F (pY ) ◦ F (jY )−1 ◦ F (f) ◦ F (jX) ◦ F (pX)−1

for [f ] : X → Y in Ho(M). Hence F∗ is unique.

We can also consider the localization for Mc and Mf with respect to weak equiva-
lences, and it’s obvious to see Mc[W−1] (resp. Mc[W−1]) is equivalent to the full sub-
category of Ho(M) consisting of cofibrant objects (resp. fibrant objects), using the same
method above. We can check the universal property of localization for subcategories
Ho(Mc) and Ho(Mf ) of Ho(M) directly. Moreover due to the existence of the factoriza-
tion system inM, Ho(Mc) and Ho(Mf ) are all actually equivalent to Ho(W).8 Finally we
have the following commutative diagram:

πMc Ho(Mc)

πMcf Ho(M)

πMf Ho(Mf )

γ̄c

∼=

γ̄

∼

γ̄f

∼=

(7)

Note that γ̄c (resp. γ̄f ) comes from the restriction of γ to Mc (resp. M) and from the
following lemma.

Lemma 2.47. Let F : M → D carry weak equivalences into isomorphisms. If f ≃l g or f ≃r

then F (f) = F (g).

Proof. Since f ≃l g and f ≃r g are dual, we may assume f ≃l g. Let h : X ⊗ I → Y be the
left homotopy of f and g.

Y X
∐
X X

X ⊗ I

(f,g)

i

∇

h
σ∼

σ is a weak equivalence⇒ F (σ) is an isomorphism. Then for i0, i1 : X → X ⊗ I , F (i0) =
F (i1) = F (σ)−1. Hence

F (f) = F (h ◦ i1) = F (h) ◦ F (σ)−1 = F (g)

8This is a theorem in [Qui67] chapter 1, p1.13, theorem 1.
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Finally we want prove for the localization functor γ : M → Ho(M), if γ(f) is an
isomorphism, then f is a weak equivalence. Since homotopy equivalences are sent to iso-
morphisms via γ, this theorem will imply every homotopy equivalence is a weak equiva-
lence. We give a proof here following [Rie20] which is different from that in [Qui67] and
[GoJ99].9

Lemma 2.48. f, g : X → Y are arbitrary two maps inM. If f ≃r g or f ≃l g, then f is a weak
equivalence iff g is a weak equivalence.

Proof. Proofs for the two conditions are the same. Hence we assume f ≃r g and f is a
weak equivalence.

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

In this diagram, pi is weak equivalence for i = 0, 1. f = p0 ◦ h⇒ h is a weak equivalence.
Hence g = p1 ◦ h is a weak equivalence.

Lemma 2.49. If X, Y are both cofibrant and fibrant, f : X → Y in M such that γ(f) is an
isomorphism, then f is weak equivalence.

Proof. That γ(f) is an isomorphism means f is homotopy equivalence between X and Y .
We decompose f as X j−→ Z

p−→ Y where j is a trivial cofibration, p is a fibration and
Z is both cofibrant and fibrant. We only need to prove p is a weak equivalence. Since
f is a homotopy equivalence, there exists g : Y → X such that gf ≃ idX , fg ≃ idY . If
H : fg ≃ idY is the left homotopy for a cylinder object Y ⊗ I , then we have the following
diagram:

Y Y Z

Y Y ⊗ I Y

g

i0

j

p

i1

θ

H

where pjg = fg = Hi0, i0 is a trivial cofibration and p is a fibration.
We let k = θ ◦ i1 : Y → Z. pk = pθi1 = Hi1 = idY . θi0 = jg. Hence θ : jg ≃l

k. According to Whitehead’s theorem, j is a homotopy equivalence. Then there is the
homotopy inverse q : Z → X such that qj ≃ idX , jq ≃ idZ .

From
jq ≃ idZ , jg ≃ k, gf ≃ idX

we conclude
kp ≃ kpjq = kfq ≃ jgfq ≃ jq ≃ idZ

9In [Qui67] p5.2 Lemma 1 is central for the proof, but the part of (3) ⇒ (2) is much more complicated. It uses the calculation of
homotopies. Gievn a left homotopy h1 : f ≃l g you should know the concrete description of h−1

1 : g ≃l f and the compositions of
homotopies h2 ∗ h1 : f ≃l h, where h2 : g ≃l h. To know these, you should be familiar with the dual proof of the Lemma A.2.9. All
these proofs can also be found in [GoJ99] Chapter II section 1, Poposition 1.14 and Lemma 1.15.
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Hence kp is a weak equivalence.

Z Z Z

Y Z Y

p

idZ

kp

idZ

p

k p

p is the retraction of kp. Hence p is a weak equivalence.

Corollary 2.50. For any f : X → Y inM, if γ(f) is an isomorphism, then f is a weak equiva-
lence.

Proof. That γ(f) is an isomorphism means f2 is a homotopy equivalence. According to
the Lemma 2.49, f2 is a weak equivalence. Hence f is also a weak equivalence.

This corollary tells us that the classW of weak equivalences coincides with the class of
morphisms which are inverted by the functor γ :M→ Ho(M). This fact tells us that in a
model category weak equivalences satisfy a property called two out of six, which is similar
to the property called two out of three appearing in the definition of model categories.

Corollary 2.51. Given a commutative diagram

B

A D

C

g

hg

∼

gf

∼

f

h

If gf and hg are weak equivalences, then so are f, g, h, hgf .

Proof. Take the functor γ :M→ Ho(M) to this diagram. γ(gf), γ(hg) are isomorphisms.
Then γ(g) has a right inverse γ(f)◦γ(gf)−1 and a left inverse γ(hg)−1 ◦γ(h). Hence γ(g) is
an isomorphism. The Corollary 2.50 tells us g will be a weak equivalence. Then f, h, hgf
are all weak equivalences.
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3 Derived Category

In this chapter, we will describe Ch(R)[W−1] whereW denotes the class of quasi-isomorphisms
in the category of chain complexes, using the method of calculus of fractions. And then, we
will describe the general Verdier quotient in triangulated categories. Actually Quillen’s
work on model categories is motivated by the work of Kan on simplicial sets and of
Verdier on derived categories. Now to see the motivation of calculus of fractions, we
begin this section with the localization of rings.

3.1 The Localization of Rings

For convenience, we consider the localization of commutative rings first. For a moment
we assume a ring is a commutative ring with a unit.

If R is a commutatuve ring and S is a set consisting of some elements in R, the lo-
calization ring RS of R with respect to S is important in the study of commutative rings
theory. The localization RS with the canonical ring map τ : R → RS satisfies a universal
property that is :

R RS

R′

τ

f f ′∃!

the diagram above is commutative, where ∀s ∈ S, f(s) is invertible in R′.
From the universal property of the localization, it’s easy to see if S is replaced by

the multiplicative set S ′ generated by S, then RS
∼= RS′ . Hence, we may assume S is a

multiplicative set that means 1 ∈ S and ∀s, t ∈ S ⇒ st ∈ S. In general, there are two ways
to construct RS . The one is classical and systematic while the other is constructive.

Classically, we can defineRS = { r
s
|r ∈ R, s ∈ S}, where r

s
= r′

s′
iff ∃t ∈ S, (rs′−r′s)t = 0

in R. Then we can define addition and multiplication on RS making it an actual commu-
tative ring. r1

s2
+ r2

s2
= r1s2+r2s1

s1s2
, r1
s1
· r2
s2

= r1r2
s1s2

. There are some things should be checked. First
the relation on RS is actually an equivalencce relation. Second, the addition and multi-
plication defined above are well defined. Third, all these actually define a commutative
ring. We leave these to readers.

Theorem 3.1. τ : R→ RS , r 7→ r
1

satisfies the universal property of localization for commutative
rings.

Proof. If f ′ exists, then f ′( r
s
) = f(r)f(s)−1. Hence it will be unique. We only need to prove

f ′ is well defined. If r
s
= r′

s′
, then ∃t ∈ S, (rs′−r′s)t = 0 in R. [f(r)f(s′)−f(r′)f(s)]f(t) = 0

inR′. But f(t) is a unit. Therefore f(r)f(s′) = f(r′)f(s) and then f(r)f(s)−1 = f(r′)f(s′)−1.
f ′ is well defined.

From the Theorem 3.1 above, it’s easy to see when R ̸= 0, RS = 0 iff 0 ∈ S. Hence we
may assume 0 /∈ S in general.

Now we state the second way to describe RS . We know, for any R-algebra R′, R′ ∼=
R[Xi; i ∈ I]/ ∼. We give this polynomial form ofRS . Suppose S is generated by {si|i ∈ I},
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which means si ∈ S and for any element s ∈ S, s = si1 · ... · sin . Obviouly, S is generated
by itself.

Proposition 3.2. RS
∼= R[Xi; i ∈ I]/(1− siXi; i ∈ I).

Proof. We only need to prove τ : R → R[Xi; i ∈ I]/(1 − siXi; i ∈ I), r 7→ r̄ satisfies the
universal property in the diagram (B.1). If f ′ exists, then f ′(r̄) = f(r). From s̄iX̄i = 1,
f ′(X̄i) = f(si)

−1. Then f ′ will be unique. We prove it’s well defined next. If
∑

u āuX̄
u = 0,

then
∑

u auX
u =

∑
i gi(X)(1−siXi), where gi(X) ∈ R[Xi; i ∈ I]. Therefore f ′(

∑
u āuX̄

u) =∑
i r

′
i(1− f(si)f(si)−1) = 0. f ′ is well defined.

According to the Proposition B.1.1, every element of RS has the form τ(r)
τ(s)

. This fact
depends heavily on the commutativity of R. Otherwise, the addition and multiplication
are hard to describe. Note r1

s1
· r2
s2

is actually r1s−1
1 r2s

−1
2 . If R is not commutative we may

not change the position of s−1
1 and r2.

Next we will describe the localization for non-commutative rings, which is much more
complicated than the case where rings are commutative.10

Fact 3.3. In the case of commutative rings τ : R → RS has the following important prop-
erties:

(1) Every element of RS has the form τ(r)τ(s)−1, where s ∈ S.
(2) ker τ = {r ∈ R|∃s ∈ S, rs = 0}.
(1’) Every element of RS has the form τ(s)−1τ(r), where s ∈ S.
(2’) ker τ = {r ∈ R|∃s ∈ S, sr = 0}.

Even if R is non-commutative, RS always exists. But in general RS won’t satisfy the
properties of (1) and (2) or (1′) and (2′) above.

Theorem 3.4. Assume R is a noncommutative ring with a unit and S is a multiplicative set.
Then RS always exists and if R ̸= 0, RS = 0 iff 0 ∈ S.

Proof. For any s ∈ S, we add s∗ to the setR such that s∗s = 1, ss∗ = 1. Then we have a new
set X = R

∐
{s∗; s ∈ S}. Every element of RS is a sum of words, such as rs∗r′ + s′∗r′′s′′∗.

It’s obvious to see RS will satisfy the universal property of the localization with respect
to S.

There is another method to prove this theorem. A ring R is actually an additive cate-
gory, with only one element ∗ such that Hom(∗, ∗) = R with composition being multipli-
cation. Then from the Remark 2.2, the localization ∗[S−1] of the category ∗with respect to
the morphism set S exists, whose morphism set is actually RS .

In the following we always assume S is a multiplicative set such that 0 /∈ S.
In general, RS has very bad behaviors. Even though R is a noncommutative domain

with S = R−{0}, τ : R→ RS may not be injective and RS may not be a division ring. All
these difficulties lie in the fact that we can’t describe the form of elements in RS clearly
and always there is a complicated relation on RS . To obtain such clear description like the

10See [Lam99] for the application of the localization technique to non-commutative algebras.
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property 1. above, we need to propose some additional structures for the multiplicative
set S, so that τ : R→ RS will satisfy the properies (1)and (2) or (1′) and (2′).

Definition 3.5. R′ ̸= 0 is said to be a right ring of fractions with respect to S ⊆ R, if there is a
ring homomorphism φ : R→ R′ such that:

1. ∀s ∈ S, φ(s) is a unit in R′.

2. Every element of R′ has the form φ(r)φ(s)−1.

3. ker φ = {r ∈ R|∃s ∈ S, rs = 0}.

If R′ is a right ring of fractions, then ∀s ∈ S, r ∈ R, sR ∩ rS ̸= ∅. In fact φ(s)−1φ(r) =
φ(a)φ(t)−1 , φ(rt) = φ(sa). Hence ∃s′ ∈ S, (rt− sa)s′ = 0. Then rts′ = sas′, where ts′ ∈ S.
This condition is called right Ore.

If s′ ∈ S, r ∈ R, s′r = 0, then φ(s′)φ(r) = 0. But φ(s′) is a unit in R′. Hence φ(r) = 0.
∃s ∈ S, rs = 0. The condition that ∃s′ ∈ S, s′r = 0 ⇒ ∃s ∈ S, rs = 0 is called right
reversible. Similarly, there are left Ore and left reversible conditions.

Theorem 3.6. R has a right ring of fractions with respect to S iff S is right Ore and right re-
versible.

Proof. The part of “⇒” has been proved. We assume S is right Ore and right reversible.
In the following, we construct a new ring RS−1, which is in fact satisfies the universal
property of the localization with respect to S.

Due to the form rs−1, we start with R× S and define a relation on it.
(a, s) ∼ (a′, s′) iff ∃b, b′ ∈ R, (ab, sb) = (a′b′, s′b′) in R × S. Note sb = s′b′ in S. The

definition is intuitive, for a
s
= ab

sb
= a′b′

s′b′
= a′

s′
. We prove it’s an equivalence relation.

It’s obvious to see (a, s) ∼ (a, s) and (a, s) ∼ (a′, s′) ⇒ (a′, s′) ∼ (a, s). Therefore we
assume (a, s) ∼ (a′, s′), (a′, s′) ∼ (a′′, s′′). Then (ab, sb) = (a′b′, s′b′), (a′c, s′c) = (a′′c′, s′′c′)
in R × S. s′c, s′b′ ∈ S, according to the right Ore condition s′cS ∩ s′b′R ̸= ∅, there exist
t ∈ S, r ∈ R such that s′ct = s′b′r ∈ s′cS ∩ s′b′R ⊆ S. Since S is reversible and s′ ∈ S,
∃t′ ∈ S, ctt′ = b′rt′. Then s′b′rt′ ∈ S.

Thus, (abrt′, sbrt′) = (a′b′rt′, s′b′rt′) = (a′ctt′, s′ctt′) = (a′′c′tt′, s′′c′tt′), which means
(a, s)brt′ = (a′′, s′′)c′tt′ in R× S.

From the definition of the equivalence relation above, for any b ∈ R such that sb ∈ S,
(a, s) ∼ (ab, sb). We define RS−1 = R×S/ ∼ and the equivalence class of (a, s) is denoted
by as−1 or a

s
. Next we define the addition and multiplication on RS−1.

Assume a1
s1
, a2
s2
∈ RS−1. Since s1S ∩ s2R ̸= ∅, ∃t ∈ S, r ∈ R, s1t = s2r ∈ S. Then a1

s1
= a1t

s1t

and a2
s2

= a2r
s2r

. Therefore, we define a1
s1

+ a2
s2

= a1t+a2r
s1t=s2r

. We should prove it’s well defined.

If (a1, s1) ∼ (a′1, s
′
1) and (a2, s2) ∼ (a′2, s

′
2).

a′1
s′1

+
a′2
s′2

=
a′1t

′+a′2r
′

s′1t
′=s′2r

′ . We need to prove
(a1t + a2r, s1t = s2r) ∼ (a′1t

′ + a′2r
′, s′1t

′ = s′2r
′). Now we have (a1t, s1t) ∼ (a1, s1) ∼

(a′1, s
′
1) ∼ (a′1t

′, s′1t
′). Similiarly, (a2r, s2r) ∼ (a′2r

′, s′2r
′). In R × S, there are following

equations: {
(a1tb, s1tb) = (a′1t

′b′, s′1t
′b′)

(a2rc, s2rc) = (a′2r
′c′, s′2r

′c′)
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the right Ore condition tells us s1tbS ∩ s2rcR ̸= ∅, then ∃x ∈ S, y ∈ R, s1tbx = s2rcy =
s2rbx ∈ S. Since s2r ∈ S, ∃u ∈ S, cyu = bxu. Hence, s1tbxu = s′1t

′b′xu = s1tcyu = s2rcyu =
s′2r

′c′yu = s′1t
′c′yu. s′1t′ ∈ S, then ∃v ∈ S, b′xuv = c′yuv.

From

{
cyuv = bxuv

c′yuv = b′suv
, we have the following equations:

{
(a1tbxuv, s1tbxuv) = (a′1t

′b′xuv, s′1t
′b′xuv)

(a2rcyuv, s2rcyuv) = (a′2r
′c′yuv, s′2r

′c′yuv)

(a1t+ a2r, s1t = s2r)bxuv = (a′1t
′ + a′2r

′, s′1t
′ = s′2r

′)b′xuv. (RS−1,+) is an additive group.
Note though we use the right Ore condition s1S ∩ s2R ̸= ∅, we only need the fact

s1t = s2r ∈ S, no matter t ∈ S or not. Thus, (R,+) is commutative. The natural map
τ : R → RS−1, τ(a) = a

1
, is then an additive group homomorphism. τ(a) = 0 ⇔ (a, 1) ∼

(0, 1)⇔ (as, s) = (0, s)⇔ as = 0. ker τ = {a ∈ R|∃s ∈ S, as = 0}.
In the following, we define the multiplication on RS−1. Note, we can’t define a1

s1
· a2
s2

as
a1a2
s1s2

directly, because we should write a1
s1
· a2
s2

as a1s−1
1 ·a2s−1

2 formally. To have the form rt−1

we should change the position of s−1
1 and a2 to some degree. But the right Ore condition

tells us a2S ∩ s1R ̸= ∅, ∃t ∈ S, r ∈ R, a2t = s1r, which intuitively means s−1
1 a2 = rt−1and

then a1s−1
1 ·a2s−1

2 = a1rt
−1s−1

2 = a1r(s2t)
−1 . Thus we define a1

s1
· a2
s2

= a1r
s2t

. Again, we should
prove it’s well defined.

Assume (a1, s1) ∼ (a′1, s
′
1) and (a2, s2) ∼ (a′2, s

′
2).

a′1
s′1
· a

′
2

s′2
=

a′1r
′

s′2t
′ , where a′2t′ = s′1r

′. We
need to prove (a1r, s2t) ∼ (a′1r

′, s′2t
′). From the assumption above, we have equations in

R× S: {
(a1b, s1b) = (a′1b

′, s′1b
′)

(a2c, s2c) = (a′2c
′, s′2c

′)

a1b
s1b
· a2c
s2c

=
a′1b

′

s′1b
′ · a

′
2c

′

s′2c
′ =

a1bx
s2cy

=
a′1b

′x

s′2c
′y

, where s1bx = a2cy, x ∈ R, y ∈ S.

Therefore we need to prove (a1bx, s2cy) ∼ (a1r, s2t), with

{
s1bx = a2cy

s1r = a2t
. Since t ∈ S,

tR ∩ cyS ̸= ∅, ∃u ∈ R, v ∈ S, tu = cyv. Then a2tu = s1ru = a2cyv = s1bxv. s1 ∈ S ⇒ ∃w ∈
S, ruw = bxvw. Then (a1bx, s2cy)vw = (a1bxvw, s2cyvw) = (a1ruw, s2tuw) = (a1r, s2t)uw.
Similarly, (a′1b′x, s′2c′y) ∼ (a′1r

′, s′2t
′). It’s done.

It’s obvious to see 1
1

is the unit of (RS−1, ·). Now, we should prove (RS−1,+, ·) is a
ring. (a1

s1
+ a2

s2
) · b

t
= a1r1+a2r2

s1r1=s2r2
· b
t
= (a1r1+a2r2)y

tx
, where bx = s1r1y = s2r2y. But a1

s1
· b
t
+ a2

s2
· b
t
=

a1r1y
tx

+ a2r2y
tx

. b
t
· (a1

s1
+ a2

s2
) is similar.

τ : R → RS−1 is actually a ring homomorphism, hence a right ring of fractions with
τ(s)−1 = 1

s
for s ∈ S.

Corollary 3.7. τ : R→ RS−1 defined above is actually a localization map with respect to S.

Proof. Given a ring homomorphism f : R → R′ such that for all s ∈ S, f(s) is a unit in
R′. If f ′ exists, f ′(a

s
) = f(a)f(s)−1 is unique. Hence we should prove it’s well defined. If
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a
s
= a′

s′
, (a, s) ∼ (a′, s′),∃b, b′ ∈ R, (ab, sb) = (a′b′, s′b′) in R× S. Then f(s)(b) = f(s′)f(b′)⇒

f(b) = f(s)−1f(s′)f(b′). f(ab) = f(a)f(s)−1f(s′)f(b′) = f(a′)f(b′). Since f(s′b′) and f(s′)
are units, f(b′) is a unit. Then f(a)f(s)−1f(s′) = f(a′) ⇒ f(a)f(s)−1 = f(a′)f(s′)−1. f ′ is
well defined.

From the proofs above, RS is a right ring of fractions iff S is right Ore and right re-
versible. If S is left Ore and left reversible as well, S−1R ∼= RS

∼= RS−1.
The work on the localization of non-commutative rings was due to Ore in the early

1930s, when he considered the case where R is a domain and S = R− {0}.

3.2 Calculus of Fractions

In fact according to the proof of the Theorem 3.4, the theory of the localization of rings
can be covered by the theory of the localization of categories. Therefore it may be possible
to use the technique from the localization of rings to study the localization of categories
since the composition of morphisms is just like the multiplication in a non-commutative
ring and both of them are non-commutative.

Definition 3.8. Given a category C and a morphism set S closed under compositions, we say S
is right Ore and right reversible or S is a multiplicative system, if it satisfies the following
conditions:

1. (right Ore): Given morphisms f ∈ Mor(C), s ∈ S with cod(f) = cod(s), there exist t ∈ S
and g ∈ Mor(C) such that f ◦ t = s ◦ g, which means f ◦ S ∩ s ◦Mor(C) ̸= ∅.

W Y

X Z

t

g

s

f

2. (right reversible): Given morphisms f, g : X Y in C, if there is a morphism t :

Y → Y ′ ∈ S such that t ◦ f = t ◦ g, then there is a morphism s : X ′ → X such that
f ◦ s = g ◦ s.

X ′ X Y Y ′s

g

f
t

Definition 3.9. Given a category C and a morphism set S closed under compositions, we say
(C, S) admits a calculus of right fractions if there is a functor τ : C → D such that:

1. ∀f ∈ S, τ(f) is an isomorphism in D.

2. Every morphism in D has the form τ(f)τ(s)−1 where s ∈ S.

3. τ(f) = τ(g) iff ∃s ∈ S, f ◦ s = g ◦ s.

Theorem 3.10. (C, S) admits a calculus of right fractions iff S is right Ore and right reversible.

86



Proof. The part of “⇒” is similar to the case of rings. Given f ∈ Mor(C), s ∈ S with
cod(f) = cod(s), since τ(s)−1τ(f) = τ(g)τ(t)−1, τ(ft) = τ(gs), then ∃u ∈ S, ftu = gsu
where tu ∈ S. If s′ ◦ f = s′ ◦ g, where s′ ∈ S, then τ(s′)τ(f) = τ(s′)τ(g). Since τ(s′) is an
isomorphism, τ(f) = τ(g) and ∃v ∈ S, fv = gv.

Next we prove the part of “⇐”. Similar to the case of rings as well, we construct a
new category CS−1 which is in fact C[S−1]. CS−1 has objects the same as C. We define
HomCS−1(X, Y ) = {(f, s)|do(f) = do(s), f ∈ Mor(C), s ∈ s}/ ∼. (f, s) ∼ (f ′, s′) iff ∃g, g′ ∈
Mor(C), (fg, sg) = (f ′g′, s′g′) in Mor(C)×S. The relation is actually an equivalence relation,
which is left to readers.

Z

X Z ′′ Y

Z ′

s f
g

g′

s′ f ′

We write the equivalence class of (f, s) as fs−1. Now we define the compositions. Given
morphims (f1, s1) and (f2, s2):

C

A B

X Y Z

t r

s1 f1 s2 f2

we define f2s−1
2 ◦ f1s−1

1 = (f2r)(s1t)
−1. We leave readers to prove it’s well defined. Now

we should prove with the composition above CS−1 is actually a category. idX = idX ◦
id−1

X ⇒ fs−1 ◦ idX = fs−1 and idY ◦ fs−1 = fs−1. (f3s
−1
3 ◦ f2s−1

2 ) ◦ f1s−1
1 = f3r(s2t)

−1 ◦
f1s

−1
1 = f3rr

′(s1t
′)−1 where s3r = f2t, s2tr

′ = f1t
′. Then f3s

−1
3 ◦ (f2s−1

2 ◦ f1s−1
1 ) = f3s

−1
3 ◦

f2tr
′(s1t

′)−1 = f3rr
′(s1t

′)−1.
Finally we prove τ : C → CS−1, τ(f) = f id−1 is a calculus of right fractions. Obviously,

τ is a functor, making morphisms s ∈ S being isomorphisms in CS−1with τ(s)−1 = ids−1.
If τ(f) = τ(g)⇔(f, id) ∼ (g, id)⇔ ∃s ∈ S, (fs, s) = (gs, s)⇔ ∃s ∈ S, fs = gs.

Corollary 3.11. CS−1 defined above is the localization of C with respect to S.

Proof. Given a functor F : C → D making morphisms s ∈ S being isomorphisms in D, if
F ′ : CS−1 → D such that F ′ ◦ τ = F exists, then F ′(fs−1) = F (f)F (s)−1 is unique. We
prove it’s well defined. If fs−1 = gt−1 ⇔ (fr, sr) = (gr′, tr′) in Mor(C) × S. F (s)F (r) =
F (t)F (r′), F (r) = F (s)−1F (t)F (r′). Then F (f)F (r) = F (f)F (s)−1F (t)F (r′) = F (g)F (r′).
Since F (tr′) and F (t) are isomorphisms, F (r′) is an isomorphism. Hence F (f)F (s)−1 =
F (g)F (t)−1. F ′ is well defined.

If (C, S) admits a calculus of left fractions as well, then S−1C ∼= C[S−1] ∼= CS−1. In the
Section B.4, we will prove for any abelian category A, (K(A),W) admits a calculus of
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left and right fractions using the method of triangulated categories, where K(A) is the
homotopy category of chain complexes andW denote the set of quasi-isomorphisms.

In the previous section, we consider model categories and we have proved the White-
head’s theorem and its converse. γ : M → Ho(M), whereM is a model category, γ(f)
is an isomorphisms in Ho(M) iff f is a weak equivalence. There is a similar but weaker
theorem for calculus of fractions.

Theorem 3.12. If (C, S) admits a calculus of left and right fractions and S satisfies the two out
of three property, then via τ : C → C[S−1], τ(g) is an isomorphism in C[S−1] iff ∃f, h ∈ Mor(C)
such that gf, hg ∈ S.

Proof. The part of “⇐” is obvious. τ(g) will have a left inverse and a right inverse hence
an isomorphism. We now assume g : X → Y is an isomorphism in C[S−1]. fs−1 =
t−1h : Y → X is the inverse of g in C[S−1]. Then (gf, s) ∼ (idY , idY ), ∃v ∈ S, u ∈ Mor(C),
(gfu, su) = (v, v) in Mor(C) × S. Since v = su, s ∈ S and S satisfies the property of two
out of three, u ∈ S. Then v = gfu, u ∈ S⇒ gf ∈ S. Similarly, from (t, hg) ∼ (idX , idX), we
conclude hg ∈ S.

Even though this theorem is weaker than that in model categories, if S satisfies the
property of two out of six, then τ(g) is an isomorphism iff g ∈ S. And this works on
homotopical categories11 in which the class of weak equivalences satisfies the two out of
six property.

We now try to compare C and CS−1 via the calculus of right fractions.

Lemma 3.13. If (C, S) admits a calculus of right fractions and Z is a zero object in C, then via
τ : C → CS−1, τ(Z) is a zero object in CS−1.

Proof. For anyX ∈ Ob(CS−1) there are maps uX : X → Z and vX : Z → X coming from C.
We need to prove they are unique in CS−1 as well. Given anyX s←− Y

uY−→ Z representing
a map X → Z in CS−1, then (uY , s) ∼ (uX , idX), (uY , s) = (uXs, s), since Z is terminal and
uXs : Y → Z is unique.

On the other hand, given any Z uY←− Y
f−→ X representing a map Z → X in CS−1, the

following diagram implies (f, uY ) ∼ (vX , idZ), since Z is initial.

Y

Z

Z X

uY f

idZ vX

vY

Next we prove an important theorem.
11See [Riel14] for more properties of homotopical category which is a generalization of model categories.
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Theorem 3.14. If (C, S) admits a calculus of right fractions, then τ : C → CS−1 preserves finite
limits. Dually, if (C, S) admits a calculus of left fractions, then τ : C → S−1C preserves finite
colimits.

Proof. It’s necessary to only prove the theorem when (C, S) admits a calculus of right frac-
tions. We prove τ preserves equalizers first and then prove it preserves finite products.

Z X Y
j

g

f

The diagram above is an equalizer in C, and we should prove it’s an equalizer in CS−1 as
well. Given any morphisms A s←− B

u−→ X representing us−1 : A→ X in CS−1 such that
fus−1 = gus−1, then fu = gu in CS−1 since s−1 is an isomorphism. Thus ∃t ∈ S, fut = gut
in C. Since Z is an equalizer, ∃!θ, jθ = ut. Then θ(st)−1 : A→ Z is the solution.

Z X Y

B

D A

j

g

f

u

s

θ

t

st

us−1

If there is any other solution:

Z X Y

E A

j

g

f

h

w

hw−1

us−1

jhw−1 = us−1 = jθ(st)−1⇒ (jh, w) ∼ (jθ, st)⇒ (jhb, wb) = (jθb′, stb′) in Mor(C)×S. Since
j is the equalizer, hence monic, hb = θb′⇒ (hb, wb) = (θb′, stb′)⇒ hw−1 = θ(st)−1 in CS−1.

The proof that τ preserves finite products is more complicated. If X × Y is a product
in C, we prove it’s the product in CS−1 as well. Given any morphisms Z ←− A −→ X and
Z ←− B −→ Y representing morphisms Z → X and Z → Y in CS−1. According to the
right Ore condition, we have the following diagram:

X Z Y

A B

D

X × Y

∃!

pr1 pr2
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Therefore we can delete A and B in the diagram above:

X Z Y

D

X × Y

fs−1 gs−1

f
s

g

θ ∃!

pr1 pr2

where pr1 ◦ θ = f , pr2 ◦ θ = g. Then Z s←− D
θ−→ X × Y is the solution. If there is another

solution:
X Z Y

E

X × Y

fs−1 gs−1

u1
t

u2

u

pr1 pr2

where ui = pri◦u, i = 1, 2, u1t−1 = fs−1, u2t−1 = gs−1. Now we should prove (u, t) ∼ (θ, s).

We already know that (u1, t) ∼ (f, s) and (u2, t) ∼ (g, s),

{
(u1b, tb) = (fb′, sb′)

(u2c, tc) = (gc′, sc′)
. Since

tb ◦Mor(C) ∩ tc ◦ S ̸= ∅, there exist x ∈ Mor(C), y ∈ S such that tbx = tcy ∈ S. But t ∈ S,
∃z ∈ S, bxz = cyz. Then tbxz = sb′xz = tcyz = sc′yz. Since s ∈ S, ∃w ∈ S, b′xzw = c′yzw.

(u1bxzw, tbxzw) = (fb′xzw, sb′xzw), (u2cyzw, tcyzw) = (gc′yzw, sc′yzw). Therefore
u1bxzw and u2cyzw = u2bxzw give a unique v : F → X × Y in C, where F = dom(w).

X F Y

E

X × Y

u1bxzw u2bxzw

bxzw

u

u1 u2

This diagram implies v = u ◦ bxzw. Similiarly, v = θ ◦ b′xzw. Hence (ubxzw, tbxzw) =
(θb′xzw, tbxzw) = (θb′xzw, sb′xzw), which means (u, t) ∼ (θ, s). θs−1 is unique.

This theorem tells us that CS−1 will have enough limits if C has enough limits.

Corollary 3.15. If (C, S) admits a calculus of right fractions and C is an additive category, then
CS−1 is an additive category as well and the localization functor τ is additive.

Proof. For any f1s
−1
1 , f2s

−1
2 : X → Y in CS−1, s1 ◦ Mor(C) ∩ s2 ◦ S ̸= ∅, s1r = s2t , then

we can define f1
s1

+ f2
s2

= f1r+f2t
s1r=s2t

= (f1r + f2t)(s1r)
−1. Similar to the case of rings, it’s well
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defined, HomCS−1(X, Y ) is an abelian group and τ is additive. According to the Lemma
3.13 and the Theorem 3.14, there exist the zero object and direct sums in CS−1.

There is a similar theorem for abelian categories.

Theorem 3.16. If (C, S) admits a calculus of right and left fractions and C is an abelian category,
then C[S−1] is an abelian category as well.

Proof. C[S−1] is additive accdoring to the corollary above. Theorem 3.14 tells us that the
localization functor τ preserves finite limits and finite colimits, and kernels and cokernels
are in fact equalizers and coequalizers respectively. Then τ preserves kernels and cok-
ernels. And isomorphisms don’t affect kernels and cokernels. Hence every morphism
in C[S−1]] has the kernel and cokernel. In fact given fs−1 = t−1g : X → Y in C[S−1],
ker(fs−1) ∼= ker g and coker(fs−1) ∼= coker f .

A X Y B

coim g coim f im f

ker g fs−1=t−1g coker f

∼ ∼

where coim g = coker(ker g) and im f = ker(coker f). coim g ∼= coimf is an isomorphism
in C[S−1] since f and g are isomorphic, while coim f

∼−→ im f is due the fact that C is an
abelian category.

3.3 The Localization of Subcactegories

Now we consider the localization for full subcategories. We assume (C, S) admits a calcu-
lus of right fractions andD is a full subcategory of C. Then S∩Mor(D) will be a morphism
set inD. If S∩Mor(D) is right Ore and right reversible as well inD, theD[(S∩Mor(D))−1]
is simply denoted by DS−1 .

D DS−1

C

CS−1

There will exist a natural fnctor DS−1 → CS−1. That D is a localizing subcategory is equiv-
alent to say:

1. Given X, Y ∈ Ob(D), ∀(f, s) ∈ (Mor(C), S) representing a morphism X → Y in CS−1,
there exists (g, t) ∈ (Mor(D),Mor(D) ∩ S) such that (f, s) ∼ (g, t) in C.

2. For any two (f, s), (g, t) ∈ (Mor(D),Mor(D) ∩ S), if (f, s) ∼ (g, t) in C, then (f, s) ∼
(g, t) in D.
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Theorem 3.17. IfD is a localizing subcategory of (C, S) and ∀X ∈ C, ∃f : X → Y or g : Z → X
such that f, g ∈ S and Y, Z ∈ Ob(D), then DS−1 ∼= CS−1. If moreover Mor(D) ∩ S consists of
isomorphisms, then D ∼= DS−1 ∼= CS−1.

Proof. The natural functor DS−1 → CS−1 will be essentially surjective.

Example 3.18. We assume R is a commutative ring with S a multiplicative set. Σ denotes
the class of morphisms f : A→ B in the category of R-modules, such that f∗ : A⊗RRS →
B ⊗R RS is an isomorphism in RS −Mod. Obviously Σ contains all isomorphisms, since
−⊗R RS is a functor. Next we prove Σ is right Ore and right reversible.

Since RS is flat and the tensor product is left adjoint, − ⊗R RS preserves finite limits

and arbitrary colimits. Given morphisms A f−→ B
g←− C where g ∈ Σ, we let D be the

pullback and then D ⊗R RS will be the pullback as well. But g∗ is an isomorphism, and
this implies D → A ∈ Σ. Hence Σ is right Ore.

Given morphisms f, g : A → B and t : C → A, if ft = gt, t ∈ Σ, then f∗ = g∗. We
choose s : B → D is the equalizer of f, g and obviously fs = gs. Since tensor products
preserve colimits, s∗ will be the equalizer of f∗, g∗, which is an isomorphism. Thus Σ is
right reversible.

Then (R −Mod,Σ) admits a calculus of right fractions and similarly it admits a cal-
culus of left fractions. We now consider the full subcategory RS −Mod ⊆ R −Mod.
For any RS-module A, using the universal property of the localization with respect to
S, it’s obvious to see A ⊗R RS

∼= A. Hence Σ ∩ Mor(RS − Mod) consists of isomor-
phisms. And it’s trivial to prove RS − Mod satisfies the two conditions of localizing
subcategory. You can check this using the fact that an R-map f : A → B with B an
RS-module factors uniquely through the RS-map A ⊗R RS → B ∼= B ⊗R RS . More-
over, for any R-module M , there is a natural map M → M ⊗R RS , which induce the
isomorphism M ⊗R RS

∼−→ M ⊗R RS ⊗R RS
∼= M ⊗R RS , hence belonging to Σ. Finally,

RS −Mod ∼= R−Mod[Σ−1].

Sometimes the two conditions stated above are cumbersome to check. In the following
we give a more flexible criterion.

Theorem 3.19. Given a localization system (C, S) which is right Ore and right reversible, and a
full subcategory D if for all s : X → Y ∈ S, Y ∈ Ob(D), there exists a morphism f : Z → X
with Z ∈ Ob(D) such that s◦f : Z → X → Y ∈ S∩Mor(D), thenD is a localizing subcategory
of C.

Proof. We first prove D is right Ore and right reversible.

E D C

A B

h t

g f

s

In the diagram above, f ∈ Mor(D), s ∈ S ∩ Mor(D). Then at the level of C, there are
morphisms t, g such that f ◦ t = s ◦ g, with t ∈ S. According to the assumption there will
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exist a morphism h : E → D such that E ∈ Ob(D), t ◦ h ∈ S ∩Mor(D). This proves the
condition of right Ore.

We assume f, g ∈ Mor(D) and s ∈ S ∩Mor(D) such that s ◦ f = s ◦ g. Then we have
the following diagram:

E D A B C
h t

g

f
s

where t ∈ S but t◦h ∈ S ∩Mor(D), f ◦ t = g ◦ t. This proves the right reversible condition.
Next we should prove D satisfies two conditions of localizing subcategory.

1. Given a morphism (f, s) : A → B in CS−1 with A,B ∈ Ob(D), there will exist
h : Y → X with Y ∈ Ob(D) such that s ◦ h ∈ S ∩Mor(D).

Y

X

A B

h

t g

s

f

Then (f, s) ∼ (g, t) with (f, s) ◦ h = (g, t).
2. Given morphisms (f, s) ∼ (g, t) identified in CS−1 with f, g ∈ Mor(D) and s, t ∈

S ∩Mor(D), there are morphisms h, h′ ∈ Mor(C) such that (fh, sh) = (gh′, th′).

X

A Z B

Y

s f
h

h′
t g

Though Z ∈ Ob(C), we can find E → Z with E ∈ Ob(D) and E → Z → A ∈ S ∩Mor(D)
since Z → A ∈ S and A ∈ Ob(D). Then (f, s) and (g, t) are identified in DS−1.

Dually there is a similar theorem for calculus of left fractions. We assume (C, S) admits
a calculus of left fractions and D is a full subcategory of it such that ∀s ∈ X → Y ∈
S,X ∈ Ob(D), ∃f : Y → Z with Z ∈ Ob(D), f ◦ s : X → Y → Z ∈ S ∩Mor(D). Then
(D, S ∩Mor(D)) is a localizing subcategory admitting a calculus of left fractions.

We will use this theorem later to obtain bounded derived categories.

3.4 Triangulated Categories

We assumeA is an abelian category and Ch(A) is the category of chain complexes. K(A)
is the quotient category of Ch(A), which means K(A) has the same objects as Ch(A)
and HomK(A)(X, Y ) = HomCh(A)(X, Y )/ ∼, where f ∼ g if f is chain homotopic to g.
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If the class of quasi-isomorphisms (homology isomorphisms) is denoted byW , then the
derived category of A is just Ch(A)[W−1] which is written as D(A) as well. The previous
chapter tells us Ch(A) is actually a model category and we can use homotopies between
fibrant and cofibrant objects to describe morphisms in Ch(A)[W−1]. In this way we can
deal with Ch(A) directly.

Before Quillen, there is another method to describe morphisms in Ch(A)[W−1], which
is due to Verdier. Instead of dealing with Ch(A) directly, we deal with K(A) and prove
(K(A),W) admits a calculus of left and right fractions. The reason why we can deal
with K(A) instead of Ch(A) is explained in the Corollary 3.21. To prove the existence of
calculus of fractions, we need the technique from triangulated categories. In this section,
we develop some general theories of triangulated categories and in the next section we
prove K(A) is a triangulated category and (K(A),W) admits a calculus of left and right
fractions.

Theorem 3.20. Ch(A)[H−1] ∼= K(A), whereH is the class of chain homotopy equivalences.

Proof. We only need to prove for every functor F : Ch·(A) → D, if F takes chain homo-
topy equivalences to isomorphisms, then F (f) = F (g) whenever f is chain homotopic to
g. The Example 2.34 implies chain homotopies are the same as right homotopies. There-
fore, if f is chain homotopic to g, f − g = s∂ + ∂s, then we have the following diagram:

Y I

X Y × Y Y

p

(f,g)

h

∆

j∼

where Y I
n
∼= Yn ⊕ Yn ⊕ Yn+1, h = (f, g, (−1)n+1s), j = (idY , idY , 0). Now we only need

to prove j is a chain homotopy equivalence. If it’s true, F (j) will be an isomorphism,
then F (f) = F (g) = F (j)−1F (h). Define q : Y I → Y , q(x, y, z) = x. Then q ◦ j = idY .
j ◦ q(x, y, z) = (x, x, 0), (id− j ◦ q)(x, y, z) = (0, y − x, z).

We let s′n : Yn ⊕ Yn ⊕ Yn+1 → Yn+1 ⊕ Yn+1 ⊕ Yn+2, (x, y, z) 7→
(
0, (−1)nz, 0

)
.

(∂s′n + s′n−1∂)(x, y, z)

=∂
(
0, (−1)nz, 0

)
+ s′n−1

(
∂x, ∂y, (−1)n(x− y) + ∂z

)
=
(
0, (−1)n∂z,−(−1)n+1(−1)nz

)
+
(
0, (−1)n−1[(−1)n(x− y) + ∂z], 0

)
=
(
0, (−1)n∂z, z

)
+
(
0, y − x+ (−1)n−1∂z, 0

)
=(0, y − x, z)

This means j is a chain homotopy equivalence.

Corollary 3.21. Since every chain homotopy equivalence is a quasi-isomorphism, we denote the
class of quasi-isomorphisms in K(A) byW as well. Then Ch(A)[W−1] ∼= K(A)[W−1].
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Proof.
Ch(A) K(A) K(A)[W−1]

D

F ∃!
∃!

where F is a functor taking quasi-isomorphisms to isomorphisms.

Therefore we can just deal with (K(A),W). Although K(A) is additive (which is not
so obvious, see Proposition 3.22), in general it’s not abelian, which will be clear if we
know K(A) is a triangulated category. A category which is both abelian and triangulated
is very special. In fact, the category of this kind is semi-simple, which means every short
exact sequence in it splits. This will be proved later. In the following we will prove
(K(A),W) admits a calculus of left and right fractions which is actually an easy corollary
of the fact that K(A) is a triangulated category.

Proposition 3.22. K(A) is an additive category.

Proof. [f ] + [g] = [f + g] is well defined since if f ∼ f ′ and g ∼ g′, then f − f ′ = ∂s + s∂,
g − g′ = ∂s′ + s′∂ and (f + g)− (f ′ + g′) = ∂(s+ s′) + (s+ s′)∂. 0 is also the zero object in
K(A). Now we only need to prove X ⊕ Y is the coproduct in K(A) as well.

Given a coproduct diagram

X

X ⊕ Y Z

Y

[fX ][ιX ]

[f ]

[fY ][ιY ]

f exists at the level of Ch(A) and we prove it’s unique up to chain homotopy. If there
is some [g] : X ⊕ Y → Z satisfying [gιX ] = [fX ] and [gιY ] = [fY ]. Then g ◦ ιX ∼ f ◦ ιX ,
gnιXn − fnιXn = ∂n+1s

X
n + sXn−1∂n where sXn : Xn → Zn+1. Let

sn = (sXn , s
Y
n ) : Xn ⊕ Yn → Zn

Then g− f = ∂s+ s∂ which can be checked using the universal property of coproducts in
Ch(A).

Now let us introduce the concept of triangulated categories. Assume A is an additive
category and T : A → A is called the translation functor if it’s an additive automorphism
which means T−1 exists and satisfies T ◦ T−1 = idA, T−1 ◦ T = idA. A triangle in A is a
sequence

X −→ Y −→ Z −→ TX
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and the morphism between triangles is just a commutative diagram

X Y Z TX

X ′ Y ′ Z ′ TX ′

f g h Tf

Definition 3.23. A pre-triangulated category is an additive category A together with a trans-
lation functor T and a collection of distinguished triangles satisfying following axioms

(TR0) Any triangle isomorphic to a distinguished one is distinguished as well.
(TR1) For any object X ∈ Ob(A), the triangle

X
idX−−→ X −→ 0 −→ TX

is distinguished.
(TR2) For any morphism f : X → Y , there exists a distinguished triangle

X
f−→ Y −→ Z −→ TX

(TR3)
X

u−→ Y
v−→ Z

w−→ TX

is distinguished iff
Y

v−→ Z
w−→ TX

−Tu−−→ TY

is distinguished.
(TR4) Given distinguished triangles

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v

g

w

h ∃ Tf

u′ v′ w′

such that u′f = gu there will exist a map h : Z → Z ′ making the diagram above commutative.

We call such category pre-triangulated since for a true triangulated category it should
satisfy one more axiom (TR5) (see Definition 3.34) which is much more complicated than
others we have described above. Actually we can obtain many properties just from ax-
ioms above and do not use axiom (TR5).

Fact 3.24. From (TR1) and (TR3) we know

X −→ 0 −→ TX
−idTX−−−−→ TX

0 −→ TX
−id−−→ TX −→ 0

TX
−id−−→ TX −→ 0 −→ T 2X

0 −→ T 2X
id−→ T 2X −→ 0
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are all distinguished. Since X is arbitrary, we can choose X = T−1Y or X = T−2(Y ) and
we conclude

0 −→ X
±id−−→ X −→ 0

is distinguished.
Only from (TR3) we see

X
u−→ Y

v−→ Z
W−→ TX

is distinguished iff
TX

−Tu−−→ TY
−Tv−−→ TZ

−Tw−−−→ T 2X

is distinguished.

Fact 3.25. In a pre-triangulated category (A, T ) there are other two equivalent forms of
(TR4).

One is
X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f

v

g ∃

w

h Tf

u′ v′ w′

where it should satisfy w′ ◦ h = Tf ◦ w.
The othere is

X Y Z TX

X ′ Y ′ Z ′ TX ′

u

f ∃

v

g

w

h Tf

u′ v′ w′

where it should satisfy v′g = hv.
This fact can be proved only using (TR3) to change positions of maps f, g, h.

Fact 3.26. If (A, T ) is a pre-triangulated category and

X
u−→ Y

v−→ Z
w−→ TX

is distinguished, then v ◦ u = 0 and w ◦ v = 0

Proof. From (TR3)
Y

v−→ Z
w−→ TX

−Tu−−→ TY

is distinguished. Hence we only need to prove v ◦ u = 0.

Y Z TX TY

Z Z 0 TZ

v

v w

id

−Tu

id

Then Tv ◦ (−Tu) = −T (vu) = 0 which means vu = 0.
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Definition 3.27. If (A, T ) is a pre-triangulated category and B is an abelian category, the functor
H : A → B is called homological if for any distinguished triangle

X
u−→ Y

v−→ Z
w−→ TX

the following sequence in B is exact

H(X)
H(u)−−−→ H(Y )

H(v)−−→ H(Z)

There is a dual concept for cohomological functors which are functors H : Aop → B
making

H(Z)
H(v)−−→ H(Y )

H(u)−−−→ H(X)

exact.

Remark 3.28. From (TR3)

Y
v−→ Z

w−→ TX
−Tu−−→ TY

T−1Z
−T−1w−−−−→ X

u−→ Y
v−→ Z

are distinguished. And note that for a morphism f in an abelian category its kernel and
image coincide with that of−f respectively. Therefore we obtain the following long exact
sequence of abelian groups via a homological functor H .

· · · −→ H(T−1Z)
H(T−1w)−−−−−→ H(X)

H(u)−−−→ H(Y )
H(v)−−→ H(Z)

H(w)−−−→ H(TX) −→ · · ·

Theorem 3.29. Suppose (A, T ) is a pre-triangulated category. Then the representable functor
Hom(A,−) : A → Ab is homological for any A ∈ Ob(A). Dually Hom(−, A) is cohomological.

Proof. Given a distinguished triangle

X
u−→ Y

v−→ Z
w−→ TX

We only need to prove

Hom(A,X)
u∗−→ Hom(A, Y )

v∗−→ Hom(A,Z)

is exact. Since v ◦ u = 0, v∗ ◦ u∗ = 0. If f ∈ ker v∗, then v∗(f) = v ◦ f = 0.

A 0 TA TA

Y Z TX TY

f

−id

Tg ∃ Tf

v w −Tu

Then −Tu ◦ Tg = Tf ◦ (−id) Then T (ug) = Tf ⇒ ug = f .
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Theorem 3.30 (Triangulated 5-Lemma). Given a morphism between two distinguished trian-
gles

X Y Z TA

X ′ Y ′ Z ′ TX ′

f

u v

g

w

h Tf

u′ v′ w′

if f, g are isomorphisms, then so is h. In fact any two of f, g, h are isomorphisms, so is the
remaider.

Proof. The second statement is clear by (TR3). For any A ∈ Ob(A):

Hom(A,X) Hom(A, Y ) Hom(A,Z) Hom(A, TX) Hom(A, TY )

Hom(A,X ′) Hom(A, Y ′) Hom(A,Z ′) Hom(A, TX ′) Hom(A, TY ′)

f∗ ∼=

u∗ v∗

g∗ ∼=

w∗

h∗ Tf∗ ∼=

T (u)∗

Tg∗ ∼=

u′
∗ v′∗ w′

∗ T (u′)∗

Then according to the 5-lemma in Ab, h∗ is an isomorphism. By Yoneda’s lemma h will
be an isomorphism.

Now we want to compare two notions of abelian categories and pre-triangulated cat-
egories.

Definition 3.31. An abelian categoryA is semi-simple if every short exact sequence inA splits.

Lemma 3.32. In a pre-triangulated category A, T , if

X
u−→ Y

v−→ Z
0−→ TX

is distinguished, then this triangle splits, i.e. u is a split monomorphism and v is a split epimor-
phism.

Proof.
X Y Z TX

X X 0 TX

id

u

u′ id

id

According to Fact 3.25, the dotted arrow u′ exists. Then u′u = id.

Z Z 0 TZ

Y Z TX TY

v′

id

id Tv′

v 0 −Tu

This diagram implies vv′ = id.

Theorem 3.33. If A is both abelian and pre-triangulateed, then it’s semi-simple.
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Proof. If
0 −→ X

f−→ Y
g−→ Z −→ 0

is exact in A. For the morphism f , by (TR2) there will exist a distinguished triangle

X
f−→ Y

u−→ W
v−→ TX

Then by (TR3)

T−1W
−T−1v−−−−→ X

f−→ Y
u−→ W

is distinguished which imiplies f ◦ T−1v = 0. But f is monic and this means T−1v = 0⇒
v = 0. Then

X
f−→ Y

u−→ W
0−→ TX

splits by the previous Lemma 3.32. Then f admits a retraction f ′ : Y → X which make
the original exact seqence split.

Above we always talk about pre-triangulated categories. Now let us introduce the real
definition of triangulated categories which will be used in the next section.

Definition 3.34. A triangulated category is a pre-triangulated category (A), T ) satisfying the
following axiom

(TR5) (Octahedra Axiom) Given three distinguished triangles

X
u−→ Y −→ Z ′ −→ TX

Y
v−→ Z −→ X ′ −→ TY

X
v◦u−−→ Z −→ Y ′ −→ TX

there is a distinguished triangle

Z ′ −→ Y ′ −→ X ′ −→ TZ ′

making the following diagram commutative

X Y Z ′ TX

X Z Y ′ TX

Y Z X ′ TY

Z ′ Y ′ X ′ TZ ′

id

u

v id

u

v◦u

id Tu

v

id

Since this axiom is really complicated, we want to state some motivations for it. In
fact given morphisms X u−→ Y

v−→ Z, X ′, Y ′, Z ′ can be obtained from (TR2) and dotted
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morphisms Z ′ → Y ′, Y ′ → X ′ can be obtained by (TR4). (TR5) actually says among all
such choices there is the “best” one or the most “functorial” one. However, in spite of
the existence of this “best” choice, the cone construction in a triangulated category is still
not functorial, which is the most serious flaw for the concept of triangulated categories
and there are many attempts to fix it such as Grothendieck’s derivator. In some sense the
theory of infinite category is also a such attempt, since the homotopy theory of a stable
model category is triangulated and there is a generalization for this special type of trian-
gulated categories named stable infinite category developed by Lurie. Nowadays, there
is also another satisfactory theory to fix this flaw. In the definition of triangulated cate-
gories, we can replace the additive category by a differential graded category and we will
obtain the dg-triangulated category which has functorial cone constructions in the derived
or homotopical sense.

Roughly speaking, in an abelian sense (TR5) says given abelian groups A ⊆ B ⊆ C
and exact sequences A→ B → B/A, A→ C → C/A, B → C → C/B,

B/A→ C/A→ C/B

should be exact. This is a good explanation at the level of abelian groups. There are also
some equivalent versions of (TR5) and readers interested in it can consult [Nee01].

3.5 The Derived Category D(A)

For a ring R (resp. an abelian category A) its derived category is defined to be the localiza-
tion of Ch(R) (resp. Ch(A)) with respect to quasi-isomorphisms. In this section our task
is to prove K(R) (resp. K(A)) admits a calculus of left and right fractions and we will use
this technique to construct D(R) := K(R)[W−1] (resp. D(A) := K(A)[W−1]).

We define the translation functor as follows.

T : Ch(A)→ Ch(A), X 7→ X[1]

where X[1]n = Xn−1 and ∂
X[1]
n = −∂Xn−1. For any chain map f , Tf = f [1] where f [1]n =

fn−1. T−1 = [−1]. Obviously T is compatible with chain homotopies and then T : K(A) ∼−→
K(A).
Definition 3.35. For a chain map f : X → Y , its mapping cone M(f) is defined to be

M(f)n = Xn−1 ⊕ Yn = X[1]n ⊕ Yn
and its differential is

∂n : Xn−1 ⊕ Yn → Xn−2 ⊕ Yn−1, (x, y) 7→ (−∂Xn−1(x), fn−1(x) + ∂Yn−1(y))

You can compare this concept with that in algebraic topology.

Fact 3.36. M(f) is actually a complex.

∂∂(x, y) = ∂(−∂x, f(x) + ∂y)

= (∂∂x,−f(∂x) + ∂f(x) + ∂∂y)

= 0
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Remark 3.37. For any chain map f , we will have

αf : Y →M(f), y 7→ (0, y)

It’s a chain map since ∂αf (y) = ∂(0, y) = (0, ∂y) = αf (∂y).
And we can define another chain map

βf :M(f)→ X[1], (x, y) 7→ x

Then βf∂(x, y) = −∂x = ∂X[1]x = −∂x. Finally we obtain the short exact sequence

0 −→ Y
αf−→M(f)

βf−→ X[1] −→ 0

Lemma 3.38. The sequence above in Remark 3.37 splits iff f is homotopic to 0.

Proof. “⇒”. Suppose βf admits a section σ : X[1]→M(f) such that βf ◦ σ = idX[1].

Xn−1 Xn−1 ⊕ Yn Xn−1

Yn

σn

sn−1

id

βfn

pr2

We define sn−1 = pr2 ◦ σn, which means σn(x) = (x, sn−1(x)). Since σ is a chain map

∂σ(x) = ∂(x, sx) = (−∂x, fx+ ∂sx)

= σ∂X[1]x = σ(−∂x) = (−∂x,−s∂x)

Then fx+ ∂sx = −s∂x, which means f ∼ 0.
“⇐”. If f ∼ 0, then there will exist sn−1 : Xn−1 → Yn such that s∂ + ∂s = −f . Define

σ : X[1]→M(f), x 7→ (x, sx)

According to the part “⇒” we see it’s actually a chain map and βf ◦ σ = idX[1].

Example 3.39.
(1) Define X = A(0) which means the only non-zero object in this chain complex is A at
the position n = 0. Let Y = B(0). Given any morphism f : A→ B, then

M(f) = · · · −→ 0 −→ A
f−→ B −→ 0 −→ · · ·

where B is at the position n = 0 and A is at n = 1.
(2) For the identity map id : X → X , M(id) = Xn−1 ⊕Xn. We could define

sn : Xn−1 ⊕Xn 7→ Xn ⊕Xn+1, (xn−1, xn) 7→ (xn, 0)
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then

(∂s+ s∂)(xn−1, xn)

=∂(xn, 0) + s(∂xn−1, xn−1 + ∂xn)

=(−∂xn, xn) + (xn−1 + ∂xn, 0)

=(xn−1, xn)

This means idM(id) ∼ 0. Hence in K(A), M(id) is isomorphic to 0.

Proposition 3.40. Let f : X → Y be chain map. Then f is an quasi-isomorphism iff M(f) is
exact which means all its homology groups are trivial.

Proof. From Remark 3.37, we see

0 −→ Y
αf−→M(f)

βf−→ X[1] −→ 0

is exact. Then we have the long exact sequence

· · · → Hn(Y )→ Hn(M(f))→ Hn−1(X)
f∗−→ Hn−1(Y )→ · · ·

To see why the connecting map Hn−1(X)→ Hn−1(Y ) is just f∗, we compute is concretely.

0 Yn Xn−1 ⊕ Yn Xn−1 0

0 Yn−1 Xn−2 ⊕ Yn−1 Xn−2 0

The connecting morphism is just the dotted arrows

x 7→ (x, 0) 7→ (−∂x, fx) 7→ fx

Now let us define the triangulated category structure on K(A).

Definition 3.41. In K(A) a sequence having the following form

X
f−→ Y

αf−→M(f)
βf−→ X[1]

is called a standard triangle. Any triangle isomorphic to a standard one is distinguished.

Theorem 3.42. Let A be an abelian category. Then K(A) is a triangulated category.

Proof. Actually A can be any additive category and to prove this theorem we won’t need
kernels and cokernels.

At first we prove in Ch(A), αf ◦ f is homotopic to 0 and βf ◦ f = 0. The second one is
clear and hence we only need to prove the first one.

αf ◦ f : X →M(f), xn 7→ (0, f(xn))
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Define
sn : Xn → Xn ⊕ Yn+1, xn 7→ (xn, 0)

then

∂sn(xn) + sn−1∂(xn)

=∂(xn, 0) + (∂xn, 0)

=(−∂xn, fxn) + (∂xn, 0)

=(0, fxn) = αf ◦ f(xn)

(TR0) and (TR1) hold by definition.
(TR1). Since

X
id−→ X −→M(id) −→ X[1]

is distinguished and M(id) is isomorphic to 0 by Example 3.39 (2), we have following
isomorphic triangles

X X 0 X[1]

X X M(id) X[1]

id

id id ∼=

id

(TR3). For a standard triangle

X
f−→ Y

αf−→M(f)
βf−→ X[1]

we only need to prove

Y
αf−→M(f)

βf−→ X[1]
−f−→ Y [1]

is distinguished. If this is valid, and

Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1]

is distinguished, then we see

X[1]
−u[1]−−−→ Y [1]

−v[1]−−−→ Z[1]
−w[1]−−−→ X[2]

is distinguished and isomorphic to a standard triangle which will imply

X
u−→ Y

v−→ Z
w−→ X[1]

is isomorphic to a standard one.
At first we have

M(αf )n = Yn−1 ⊕Xn−1 ⊕ Yn, (yn−1, xn−1, yn) 7→ (−∂yn−1,−∂xn−1, yn−1 + fxn−1 + ∂yn)
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We want to prove there is an isomorphism g making the following diagram commutative

Y M(f) X[1] Y [1]

Y M(f) M(αf ) Y [1]

id

αf βf

id

−f

g ∃ id

αf ααf βαf

We write it concretely

Yn Xn−1 ⊕ Yn Xn−1 Yn−1

Yn Xn−1 ⊕ Yn Yn−1 ⊕Xn−1 ⊕ Yn Yn−1

id

αf βf

id

−f

g id

αf ααf

j

βαf

Define g(x) = (−fx, x, 0). Firstly we check it’s a chain map.

∂g(x) = ∂(−fx, x, 0) = (∂fx,−∂x,−fx+ fx) = (∂fx,−∂x)

and
g∂X[1](x) = −g∂x = (f∂x,−∂x, 0)

Next we prove such defined g make the diagram commutative up to chain homotopy,
which is what the difficulty lies in. In the long proof of this theorem, “commutative dia-
gram” is always commutative up to homotopy and we should find all chain homotopies.
Consider ααf

− g ◦ βf which sends (x, y) to (fx, 0, y).
Define

sn : Xn−1 ⊕ Yn → Yn ⊕Xn ⊕ Yn+1, (x, y) 7→ (y, 0, 0)

then

(∂s+ s∂)(x, y) = ∂(y, 0, 0) + s(−∂x, fx+ ∂y)

= (−∂y, 0, y) + (fx+ ∂y, 0, 0)

= (fx, 0, y)

Then in K(A), ααf
= g ◦ βf . And note that βαf

◦ g = −f is strict. Next we will prove g is a
homotopy equivalence.

Let j : M(αf ) → X[1], Yn+1 ⊕ Xn−1 ⊕ Yn → Xn−1 by (y1, x, y2) 7→ x. Also we should
prove j is actually a chain map

j∂(y1, x, y2) = j(−∂y1,−∂x, y1 + fx+ ∂y + 2) = −∂x

and ∂X[1]j(y1, x, y2) = ∂X[1]x = −∂x. Obviously we see j ◦ g = idX . Hence we only need
to prove g ◦ j ∼ id. Actually g ◦ j(y1, x, y2) = (−fx, x, 0) then

(gj − id)(y1, x, y2) = (y1 + fx, 0, y2)
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Let s′n : Yn−1 ⊕Xn−1 ⊕ Yn → Yn ⊕Xn ⊕ Yn+1, (y1, x, y2) 7→ (y2, 0, 0). Then

(∂s′ + s′∂)(y1, x, y2) = ∂(y2, 0, 0) + s′(−∂y1,−∂x, y1 + fx+ ∂y2)

= (−∂y2, 0, y2) + (y1 + fx+ ∂y2, 0, 0)

= (y1 + fx, 0, y2)

These prove (TR3).
(TR4). We only need to find the morphism w between two standard triangles.

X Y M(f) X[1]

A B M(g) A[1]

f

u

αf

v

βf

w ∃ u[1]

g αg βg

Also we write it concretely

Xn Yn Xn−1 ⊕ Yn Xn−1

An Bn An−1 ⊕Bn An−1

f

u

αf

v

βf

w u

g αg βg

Since gu ∼ vf , there will exist sn : Xn → Bn+1 such that vf − gu = s∂ + ∂s. We let
w(x, y) = (ux, sx + vy). Then obviously we see in Ch(A), αgv = wαf and βgw = uβf .
Therefore we only need to check it’s actually a chain map.

w∂(x, y) = w(−∂x, fx+ ∂y) = (−u∂x,−s∂x+ vfx+ v∂y)

and ∂w(x, y) = ∂(ux, sx+ vy) = (−∂ux, gux+ ∂sx+ ∂vy). They in fact coincide with each
other.

(TR5). This is the most complicated part of the proof and it can also be checked at the

level of standard triangles. Given morphisms X f−→ Y
g−→ Z, we have

X Y M(f) X[1]

X Z M(gf) X[1]

Y Z M(g) Y [1]

f

g

αf

u

βf

f

gf αgf

v

βgf

g αg βg

If we let u = (id, g) : X[1] ⊕ Y → X[1] ⊕ Z and v = (f, id) : X[1] ⊕ Z → Y [1] ⊕ Z, then
the right part of this diagram will be commutative in Ch(A). It’s easy to see u and v are
chain maps. Next our task is to prove

M(f)
u−→M(gf)

µ−→M(f)[1]

106



where µ(y, z) = (0, y) is distinguished. Specifically, we prove it is isomorphic to

M(f)
u−→M(gf)

αu−→M(u)
βu−→M(f)[1]

up to homotopy.

Xn−1 ⊕ Yn Xn−1 ⊕ Zn Yn−1 ⊕ Zn Xn−2 ⊕ Yn−1

Xn−1 ⊕ Yn Xn−1 ⊕ Zn Xn−2 ⊕ Yn−1 ⊕Xn−1 ⊕ Zn Xn−2 ⊕ Yn−1

u

id

v

id

µ

w id

u αu βu

where M(u)n :=M(f)n−1⊕M(gf)n = Xn−2⊕Yn⊕Xn−1⊕Zn and the differential operator
is actually

∂(x1, y, x2, z) =
(
− ∂(x, y), u(x, y) + ∂(x2, z)

)
=

(
− (∂x1, fx1 + ∂y), (x1, gy) + (−∂x2, gfx2 + ∂z)

)
= (∂x1,−fx1 − ∂y, x1 − ∂x2, gfx2 + gy + ∂z)

We define w(y, z) = (0, y, 0, z), then

w∂(y, z) = w(−∂y, gy + ∂z) = (0,−∂y, 0, gy + ∂z)

and ∂w(y, z) = ∂(0, y, 0, z) = (0,−∂y, 0, gy + ∂z). Thus w is a chain map.
βu ◦ w(y, z) = (0, y) = µ(y, z). Then βu ◦ w = µ in Ch(A).

wv(x, z) = w(fx, z) = (0, fx, 0, z), αu(x, z) = (0, 00, x, z)

hence (αu − wv)(x, z) = (0,−fx, x, 0). Define

sn : Xn−1 ⊕ Zn → Xn−1 ⊕ Yn ⊕Xn ⊕ Zn+1, (x, z) 7→ (x, 0, 0, 0)

and then

∂s+ s∂)(x, z) = ∂(x, 0, 0, 0) + s(−∂x, gfx+ ∂z)

= (∂x,−fx, x, 0) + (−∂x, 0, 0, 0)
= (0,−fx, x, 0)

which means αu = wv up to homotopy. This proves the diagram above is commutative.
Finally we want to show w is a homotopy equivalence. Let

p : Xn−2 ⊕ Yn−1 ⊕Xn−1 ⊕ Zn → Yn−1 ⊕ Zn, (x1, y, x2, z) 7→ (fx2 + y, z)

In tradition we need to prove it’s a chain map.

p∂(x1, y, x2, z) = p(∂x1,−fx1 − ∂y, x1 − ∂x2, gfx2 + gy + ∂z)

= (−fx1 − ∂y + fx1 − f∂x2, gfx2 + gy + ∂z)

= (−∂y − f∂x2, gfx2 + gy + ∂z)
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and ∂p(x1, y, x2, z) = ∂(fx2 + y, z) = (−∂y − f∂x2, gfx2 + gy + ∂z). Obviously p ◦ w = id
and we next prove w ◦ p ∼ id.

(id− wp)(x1, y, x2, z) = (x!,−fx2, x2, 0)

Let

sn : Xn−2 ⊕ Yn−1 ⊕Xn−1 ⊕ Zn → Xn−1 ⊕ Yn ⊕Xn ⊕ Zn+1, (x1, y, x2, z) = (x2, 0, 0, 0)

then

(∂s+ s∂)(x1, y, x2, z)

=∂(x2, 0, 0, 0) + s(∂x1,−fx1 − ∂y, x1 − ∂x2, gfx2 + gy + ∂z)

=(x1,−fx2, x2)

This proves w is a homotopy equivalence.

In this long proof above, to find a new chain map or to find a chain homotopy is not
difficult, since we can use the method of undetermined coefficients. And to check a given
morphism is a homotopy equivalence is also not difficult. We often find its inverse, one
composition equation in Ch(A) and the other in K(A). The strict equation will help us
find the inverse and we only need to check the other part is up to homotopy.

Every distinguished triangle in K(A) corresponds to a short exact sequence in Ch(A)
but conversely not every short exact sequence defines a distinguished triangle in K(A).
However, the converse is true in derived categories and it’s a part of the reason why
derived categories can be used fully in homological algebra.

Example 3.43. Assume A = Ab. Given an exact sequence

0 −→ Z/2Z ×2−→ Z/4Z ×1−→ Z/2Z −→ 0

its corresponding triangle

Z/2Z ×2−→ Z/4Z ×1−→ Z/2Z w−→ Z/2Z[1]

is not distinguished, where we use an object in Ab to represent a chain complex centered
at n = 0. Otherwise w = 0 and Z/4Z ∼= Z/2Z ⊕ Z/2Z in K(Ab). But Z/4Z and Z/2Z are
all center at n = 0. Hence

Z/4Z ∼= Z/2⊕ Z/2Z
in Ab which is impossible.

And note that Proposition 3.40 here says in a distinguished triangle

X
f−→ Y

g−→ Z
h−→ X[1]

f is a quasi-isomorphism iff Z is exact. This is clear since a homotopy equivalence pre-
serves homology groups and every distinguished triangle is homotopy equivalent to a
standard one. Now we start to prove the following important theorem for derived cate-
gories.
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Theorem 3.44. Suppose A is abelian. Then (K(A),W) is right/left Ore and right/left reversible.

Proof. We only prove it’s right Ore and right reversible since the other part is similar.
Given a problem

Z

X Y

q

f

where q ∈ W . At first we obtain a distinguished triangle

Z
q−→ Y

u−→ U −→ Z[1]

from (TR2). Apply (TR2) again to the morphism uf : X → U .

X
uf−→ U −→ W [1]

−t−→ X[1]

is distinguished. Then we have a commutative diagram

W X U W [1]

Z Y U Z[1]

t

g f

uf

id g

q u

(TR4) tells us there will exist g making the diagram commutative. Since q ∈ W , U is exact
which means t ∈ W . This is clear by Proposition 3.40.

Given a diagram

X Y Y ′
f

g

q

such that qf = qg and q ∈ W . Let h = f − g ⇒ qh = 0. By (TR2) we can find a
distinguished triangle of the form

U
u−→ Y

q−→ Y ′ −→ U [1]

Since q ∈ W , U [1] is exact. Obviously U is hence exact. And by (TR4) we have the
commutative diagram

X X 0 X[1]

U Y Y ′ U [1]

id

v h v

u q

satisfying uv = h. Apply (TR2) to v : X → U and we obtain a distinguished triangle

V
s−→ X

v−→ U −→ V [1]

Since U is exact, s ∈ W . And we see v ◦ s = 0⇒ uvs = hs = 0⇒ fs = gs.
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Now we define D(A) = K(A)[W−1]. Let τ : Ch(A) → D(A) be the localization
functor. Then we can prove g is a quasi-isomorphism in Ch(A) iff τ(g) is an isomorphism
in D(A).

Proof. Actually the part of “⇒” is clear and we prove “⇐”. From Theorem 3.12, there
will exist chain maps f, h such that gf and hg are quasi-isomorphisms. Then gn∗fn∗ and
hn∗gn∗ are isomorphisms in Ab. This means gn∗ has a left inverse and a right inverse
which implies it’s an isomorphism.

Although from Corollary 3.15 and Proposition 3.22 we conclude D(A) is additive, in
general it’s not abelian. In the following we will talk about an example but before this we
should introduce some computations in homological algebra using derived categories.

Remark 3.45. In this remark we consider D(R) and R-modules are thought to be left R-
modules. We will use the technique from model categories talked about in the previous
chapter freely.

For any R-module M we compute its derived functor ExtnR(M,−). At first we look at
the case M = R. Given a chain complex X ∈ Ch(R)

· · · 0 R 0 · · ·

· · · Xn+1 Xn Xn−1 · · ·

x
s

where the bottom complex is X[−n]. Then a chain map R(0) → X[−n] just means an
element in ker ∂n. If we consider chain homotopies, x ∼ y if there exists some s : R →
Xn+1 which here is identified with s(1), such that x−y = ∂n+1s. This interpretation shows
that

Hn(X) ∼= HomK(R)(R,X[−n])
Actually we see R(0) is bounded below and above and therefore R(0) is cofibrant in
Ch(R). And since every complex is fibrant, we conclude

HomHo(Ch(R))(R,X[−n]) ∼= HomCh(R)(R,X[−n])/ ∼∼= HomK(R)(R,X[−n])

where Ho(Ch(R)) is just D(R). The last isomorphism comes from Example 2.34 which
asserts right homotopies in the model category Ch(R) are just chain homotopies. There-
fore

Hn(X) ∼= HomD(R)(R,X[−n])
From this we see derived categories contain the information of homology naturally.

Now let us replace R by any module M .

· · · 0 M 0 · · ·

· · · Xn+1 Xn Xn−1 · · ·

f
s

110



A chain map f : M(0) → X[−n] means a morphism f : M → Xn such that ∂n ◦ f = 0
which is just an element in ker ∂n∗ where

∂n∗ : HomR(M,Xn)→ HomR(M,Xn−1)

Any two morphisms f, g are equivalent if there is some s : M → Xn+1 such that f − g =
∂n+1s = ∂n+1∗(s). This implies

Hn(HomR(M,X•)) ∼= HomK(R)(M,X[−n]) ∼= HomD(R)(M,X[−n])

If N is any other R-module, let

0 −→ N −→ I0 −→ I−1 −→ · · ·

be its injective resolution and then

ExtnR(M,N) ∼= H−n(HomR(M, I•)) ∼= HomD(R)(M, I•[n])

Moreover look at this diagram

· · · 0 N 0 · · ·

· · · 0 I0 I−1 · · ·

The chain map induces isomorphic homology groups hence belonging toW , which means
in D(R), N ∼= I•. And finally we obtain

ExtnR(M,N) ∼= HomD(R)(M,N [n])

Example 3.46. In this example, we explain why D(R) and therefore K(R) are in general
not abelian. Given any two modulesM, N such that Ext1R(M,N) ̸= 0. For instance,R = Z
and M = N = Z/2Z, then Ext1Z(Z/2Z,Z/2Z) = Z/2Z ̸= 0. From Remark 3.45

Ext1R(M,N) ∼= HomD(R)(M,N [1])

there will be a non-trivial element e ∈ HomD(R)(M,N [1]).
In the following we will prove e does not have a kernel. Actually, the kernel is just

the pullback which is compatible with the translation functor. The compatibility actually
needs some words. In a derived category the translation functor is also defined to be the
shift of complexes. See Theorem 3.48 and Theorem 3.54.

R

X M

0 N [1]

f

e
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We suppose such pullback exists in D(R). By the universal property of pullbacks we have
the following exact sequence in Ab

0 −→ HomD(R)(R,X[−n]) −→ HomD(R)(R,M [−n]) −→ HomD(R)(R,N [−n+ 1])

from Remark 3.45 which is just

0 −→ Hn(X) −→ Hn(M) −→ Hn−1(N)

This sequence is exact. But Hn−1(N) is trivial except H0(N) = N . But when n = 1,
H1(M) = 0⇒ H1(X) = 0. Therefore f induces isomorphic homology groups. Since K(R)
admits calculus of fractions according to Theorem 3.44, we may assume f is represented
by X s←− Y

g−→M where s ∈ W . Then the map Hn(X)→ Hn(M) is just g∗ ◦ s−1
∗ : Hn(X)→

Hn(Y ) → Hn(M). This is an isomorphism. We conclude g is a quasi-isomorphism which
implies f is an isomorphism in D(R). Then in the pullback diagram above e = 0 but we
have supposed 0 ̸= e ∈ Ext1R(M,N). This means e does not have the kernel.

There is a triangulated category structure on D(A) as well which actually comes from
K(A).

Definition 3.47. A triangle is distinguished in D(A) is it’s isomorphic to some standard one

X
f−→ Y

αf−→M(f)
βf−→ X[1]

in D(A).

Theorem 3.48. If A is a triangulated category, then D(A) is an abelian category.

Proof. This is a corollary of a more general Theorem 3.53. We only need to prove the
functor T = [−] is compatible with the triangulation (see Definition 3.52), but it’s so clear
by the definition of T = [−].

Sometimes we deal with subcategories of Ch(A) such as bounded, bounded below
or bounded above chain complex category. For instance, in homological algebra we of-
ten talk about projective resolutions or injective resolutions which are not unbounded.
Therefore here it’s necessary to consider the localization for subcategories and we will
use techniques from Section 3.3. We denote the category of bounded (resp. bounded be-
low, resp. bounded above) chain complexes by Chb(A) (resp. Ch+(A), resp. Ch−(A)).
And its homotopy category is denoted by Kb(A) (resp. K+(A), resp. K−(A)). The derived
category is Db(A) (resp. D+(A), resp. D−(A)).

Theorem 3.49. Db(A) (resp. D+(A), resp. D−(A)) is equivalent to the full subcategory of D(A)
consisting of bounded (resp. bounded below, resp. bounded above) complexes.

Proof. We will use Theorem 3.19 to prove this theorem. More generally we consider the
category Ch≥n(A) consisting of objects Y of the form

· · · −→ Yn+1 −→ Yn −→ 0 −→ · · ·
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Given a quasi-isomorphism s : X → Y with Y ∈ Ch≥n(A), we define

τ≥n(X) := · · · −→ Xn+1 −→ ker ∂n −→ 0 −→ · · ·

belonging to Ch≥n(A). Since s is a quasi-isomorphism, Hk(X) = 0 for k ≤ n−1. Then the
inclusion τ≥nX ↪→ X is a quasi-isomorphism and therefore τ≥nX ↪→ X

s−→ Y is a quasi-
isomorphism in Ch≥n(A). Then Theorem 3.19 implies K≥n(A) is a localizing subcategory
of K(A).

Dually suppose s : X → Y is a quasi-isomorphism with X ∈ Ch≤n(A). Then Hk(Y ) =
0 for k ≥ n+ 1. Define

τ≤n(Y ) := · · · −→ 0 −→ coker ∂n+1 = Yn/im ∂n+1 → Yn−1 −→ · · ·

Then there is a natural quasi-isomorphism Y → τ≤nY and X → Y → τ≤nY is a quasi-
isomorphism belonging to Ch≤n(A). Then K≤n(A) is also a localizing subcategory of
K(A).

For bounded, bounded below or bounded above complexes we can deal with them
similarly.

To finish the section we complete the work above Example 3.43 and prove every short
exact sequence inAwill give a distinguished triangle in D(A). To do this let us introduce
the concept of mapping cylinder in Ch(A).

Definition 3.50. For a chain map f : X → Y , the mapping cylinder is defined to be

Cyl(f)n := Xn ⊕Xn−1 ⊕ Yn, ∂ : (x1, x2, y) 7→ (∂x1 − x2,−∂x2, fx2 + ∂y)

Checking the three positions pointwise, it’s clear that the differential operator ∂ is well
defined.

Theorem 3.51. Given an abelian category A, every short exact sequence in Ch(A)

0 −→ X
f−→ Y

g−→ Z −→ 0

gives a distinguished triangle
X

f−→ Y
g−→ Z −→ X[1]

in D(A).

Proof. Firstly we study the mapping cylinder further. We have an inclusion ι : X ↪→
Cyl(f), x 7→ (x, 0, 0) and it’s obvious to see it’s a chain map. And we have a projection

π : Cyl(f)→M(f), (x1, x2, y) 7→ (x2, y)

To prove it’s a chain map, we compute

∂π(x1, x2, y) = ∂(x2, y) = (−∂x2, fx2, ∂y) = π∂(x1, x2, y)

Then we obtain an exact sequence

0 −→ X
ι←− Cyl(f)

π−→M(f) −→ 0
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and a commutative diagram

0 Y M(f) X[1] 0

0 X Cyl(f) M(f) 0

X Y

αf

σ

βf

id

ι

id

π

τ

f

where
σn : Yn → Xn ⊕Xn−1 ⊕ Yn, y 7→ (0, 0, y)

and
τn : Xn ⊕Xn−1 ⊕ Yn → Yn, (x1, x2, y) 7→ fx1 + y

It’s clear that σ is a chain map but for τ it need some words.

τ∂(x1, x2, y) = τ(∂x1 − x2,−∂x2, fx2 + ∂y)

= f∂x1 − fx2 + fx2 + ∂y

= f∂x1 + ∂y

= ∂fx1 + ∂y

= ∂τ(x1, x2, y)

Next we will prove τ and σ are homotopy equivalences. Firstly it’s clear τ ◦ σ = idY .
Therefore it’s enough to prove σ ◦ τ ∼ idCyl(f).

σ ◦ τ : Xn ⊕Xn−1 ⊕ Yn → Xn ⊕Xn−1 ⊕ Yn, (x1, x2, y) 7→ (0, 0, fx1 + y)

then (στ − id)(x1, x2, y) = (−x1,−x2, fx1). Define

sn : Xn ⊕Xn−1 ⊕ Yn → Xn+1 ⊕Xn ⊕ Yn+1, (x1, x2, y) 7→ (0, x, 0)

We have

(∂s+ s∂)(x1, x2, y) = (−x1,−∂x!, fx1) + (0, ∂x1 − x2, 0)
= (−x1,−x2, f1)

Hence σ ◦ τ = id in K(A). Especially they are quasi-isomorphisms. If we give a short
exact sequence in Ch(A)

0 −→ X
f−→ Y

g−→ Z −→ 0

we have the commutative diagram by diagram chasing

0 X Cyl(f) M(f) 0

0 X Y Z 0

ι

id

π

τ γ ∃!

f g
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Since τ and id are quasi-isomorphisms, applying the 5-lemma (at the leveal of Ab) to
the induced long exact homology sequences we conclude γ is a quasi-isomorphism hence
an isomorphism in D(A). Moreover in D(A) we have the following isomorphic triangles

X Y M(f) X[1]

X Cyl(f) M(f) X[1]

X Y Z X[1]

id

f

σ

αf

id

βf

id

id

ι

τ

π

γ

βf

id

f g βfγ
−1

which proves

X
f−→ Y

g−→ Z −→ X[1]

is distinguished.

Note that Theorem 3.51 is not ture in K(A) (see Example 3.43) because such γ may not
be a homotopy equivalence.

3.6 Verdier Quotient in General

In this section we will talk about the abstract theory of the localization for triangulated
categories as a generalization of the case K(A).

Recall for a category C, a multiplicative systemW is right Ore and right reversible. See
Definition 3.8.

Definition 3.52. For a triangulated category (A, T ), a multiplicative system W is compatible
with the triangulation if given f ∈ W , T nf ∈ W of all n ∈ Z.

Theorem 3.53. Let (A, T ) be a triangulated category with W a multiplicative system which is
compatible with the triangulation. Then AW−1 carries the unique triangulated structure such
that the localization functor τ : A → AW−1 is exact.

We should explain the exactness between two triangulated categories first.

Definition 3.54. An exact functor F : (A, T ) → (A′, T ′) of trnaigulated categories is additive
together with natural isomorphisms

φX : F (TX)
∼−→ T ′F (X)

such that for any distinguished triangle

X
u−→ Y

v−→ Z
w−→ TX

in A,
F (X)

F (u)−−→ Y
F (v)−−→ F (Z)

φX◦F (w)−−−−−→ T ′F (X)

is distinguished in A′.
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Proof of Theorem 3.53. We show what’s the translation functor in AW−1.

A AW−1

A

AW−1

T

τ

T ′ ∃!
τ

T ′ exists since T respects morphisms inW . Replace T in this diagram by T−1 we obtain
T ′
2 : AW−1 → AW−1. They satisfies{

T ′ ◦ τ = τ ◦ T
T ′
2 ◦ τ = τ ◦ T−1

Then T ′T ′
2 ◦ τ = T ′ ◦ τT−1 ◦ τ ◦ T ◦ T−1 = τ . By the universal property of localization,

we see T ′T ′
2 = idAW−1 . It’s clear T ′

2 ◦ T ′ = id as well. T ′ is just the translation functor for
AW−1. The natural isomorphisms φX in Definition 3.54 are actually identities.

A triangle is distinguished in AW−1 if it’s isomorphic to a standard one coming from
A via the localization functor τ : A → AW−1.

(TR0) and (TR1) are clear.
(TR2). Given a morphism X

s←− A
f−→ Y in HomAW−1(X, Y ) where s ∈ W . Then

A Y Z TA

X Y Z TX

s ∼=

f

id id

fs−1

Note that s is an isomorphism in AW−1.
(TR3), (TR4) and (TR5) are all easy to see since we can just check these axioms at the

level of standard triangles. And then the triangulated structure comes from A.
Finally we need to prove this triangulated structure is unique to make τ exact. Sup-

pose τ is exact and given any distinguished triangle

X
fs−1

−−−→ Y −→ Z −→ TX

we prove it’s isomorphic to a standard one. In fact

A Y C TA

X Y Z TX

s ∼=

f

id ∃

fs−1

where the above triangle comes from A and the dotted arrow comes from (TR4) which is
an isomorphism by Theorem 3.30.
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Definition 3.55. Let (A, T ) be a triangulated category. A full additive subcategory C is called
triangulated subcategory if every object in A isomorphic to an object in C is in C and C satisfies

(TS1) For any X ∈ Ob(C), T nX ∈ Ob(C) for all n ∈ Z.
(TS2) If

X −→ Y −→ Z −→ TX

is distinguished in A and X, Y ∈ Ob(C), then Z ∈ C.

(TS2) is equivalent to say for a distinguished triangle if two of X, Y, Z are in C, then
so is the remainder. These two axioms make C be a triangulated category and the triangu-
lated structure comes from A. For a triangulated subcategory C, we defineWC ⊆ Mor(A)
such that f ∈ WC iff there is some distinguished triangle

X
f−→ Y −→ Z −→ TX

with Z ∈ Ob(C). From (TR4) and triangulated 5-lemma, Z will be unique up to isomor-
phism.

Lemma 3.56. If f ∈ WC , then Tf ∈ WC .

Proof. Suppose f ∈ WC and we have isomorphic diagrams

X Y Z TX

X Y Z TX

−f

id −id

g −h

−id id

f g h

which implies −f ∈ WC . By (TR3)

TX
−Tf−−→ TY

−Tg−−→ TZ
−Th−−→ T 2X

Z ∈ Ob(C) ⇒ TZ ∈ Ob(C). Then −Tf ∈ WC and Tf ∈ WC according to the statement
above.

Lemma 3.57. Every isomorphism f : X → Y is inWC

Proof. Assume g : Y → X is the inverse of f .

X Y Z TX

X X 0 TX

id

f

g

id

The above triangle is obtained by (TR2). From Theorem 3.30, Z
∼=−→ 0. Then

X
f−→ Y −→ 0 −→ TX

is distinguished. Since C is an additive subcategory, 0 ∈ Ob(C). Then f ∈ WC .
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Lemma 3.58. WC satisfies the property of two out of three, which means given morphisms X f−→
Y

g−→ Z if any two of f, g and gf are inWC , then so is the remainder.

Proof. (TR5) tells us there is the following diagram

X Y Z ′ TX

X Z Y ′ TX

Y Z X ′ TY

id

f

g

f

gf

id

g

With any two of f, g and gf belonging toWC , we can choose corresponding X ′, Y ′ or Z ′

in C, and then (TR5) implies there is a distinguished triangle

Z ′ −→ Y ′ −→ X ′ −→ TZ ′

with two objects in C. Since C is a triangulated subcategory, (TS2) implies the remainder
is also in C. Then the third morphism will be inWC by definition.

Theorem 3.59. WC is right/left Ore and right/left reversible.

Proof. Given a problem
Z

X Y

q

f

with q ∈ WC , there will exist a distinguished triangle

Z
q−→ Y

u−→ A −→ TZ

with A ∈ C. Applying (TR2) to uf : X → A we obtain a distinguished triangle

X
uf−→ A −→ TB

−Tt−−→ TX

and from (TR3) this triangle becomes a new distinguished one

B
t−→ X

uf−→ A −→ TB

Since A ∈ C, t ∈ WC . By (TR4) there will exist the dotted arrow g making the diagram
commuative.

B X A TB

Z Y A TZ

g

t uf

f Tg

q u
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For the second part of the proof, we give the diagram

X Y Z
f

g

q

such that qf = qg and q ∈ WC . Let h = f − g then qh = 0. Since q ∈ WC , we have a
dinstinguished triangle

Y
q−→ Z −→ A −→ TY

with A ∈ C, by (TR2) this induces a new one

T−1A
u−→ Y

q−→ Z −→ Z

Finally from (TR4),

X X 0 TX

T−1A Y Z A

v

id

h

u q

Embed v in the distinguished triangle

V
s−→ X

v−→ T−1A −→ TV

where T−1A ∈ C. Then vs = 0⇒ 0 = uvs = hs⇒ fs = gs.

ThenWC will be a multiplicative compatible with the triangulation.

Application 3.60. In the case of derived categories D(A), the triangulated subcategory
C consists of all exact complexes and from Proposition 3.40 WC consists of all quasi-
isomorphisms.

We denote the localization category A[W−1
C ] by A/C and in the following readers will

why we use this symbol (see Theorem 3.65).

Definition 3.61. If F : A → A′ is an exact functor between triangulated categories (see Defini-
tion 3.54), the kernel of F is defined to be the full subcategory ker F of A such that

X ∈ Ob(ker F ) iff F (X) ∼= 0 in A′

Lemma 3.62. ker F defined above is a triangulated subcateory in the sense of Definition 3.55.

Proof. Since an additive functor between additive categories preserve direct sums, ker F
is a full additive subcategory and it’s closed under isomorphism.

(TS1). Let X ∈ ker F ⇒ FX ∼= 0. And via natural isomorphisms φ, F (TX)
∼−→

T (FX) ∼= 0. Then TX ∈ ker F . And note that 0 ∼= F ◦ T (T−1X)
∼=−→ T (FT−1X) ⇒

T (FT−1X) ∼= 0. Hence FT−1X ∼= 0 and T−1X ∼= ker F .
(TS2). Given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ TX
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with X, Y ∈ ker F . Apply F to this diagram and we will obtain a distinguished triangle
in A′ with FX, FY, TFX ∼= 0. From (TR4) and triangulated 5-lemma, there will exist
an isomorphism F (Z) → 0 making this diagram isomorphic to the zero triangle. Hence
Z ∈ ker F .

Definition 3.63. A triangulated subcategory C of A is called thick if it contains all direct sum-
mand of its objects, which means if X ⊕ Y ∈ Ob(C) then X, Y ∈ Ob(C).
Lemma 3.64. ker F is thick.
Proof. If X ⊕ Y ∈ Ob(ker F ), F (X)⊕ F (Y ) ∼= 0 and then F (X) ∼= F (Y ) ∼= 0.

Theorem 3.65. Let A be a triangulated category with C a triangulated subcategory of A not
necessarily thick. Then there exists a universal exact functor τ : A → A/C with C ⊆ ker τ .
Here τ is universal in the sense that given any exact functor F : A → A′ between triangulated
categories with C ⊆ ker F , then there will exist the unique funcotr θ : A/C → A′ saitsfying
θ ◦ τ = F .

A A/C

A′

F

τ

Proof. The universal functor is just the localization functor τ and we prove it satisfies the
universal property for kernels. To prove this we only need to prove an exact functor F
with C ⊆ ker F sends morphisms in WS to isomorphisms. But at first we should check
C ⊆ ker τ .

Given X ∈ Ob(C), by (TR1) and (TR3)

X −→ 0 −→ TX
−id−−→ TX

is distinguished. Since TX ∈ Ob(C), X → 0 belongs to WC . Hence τ(X) → 0 is an
isomorphism in A/C, which means X ∈ ker τ .

Given any exact functor F : A → A′ with C ⊆ ker F , suppose q : X → Y belongs to
WC and then there will be a distinguished triangle

X
q−→ Y −→ Z −→ TX

with Z ∈ C.
FX FY FZ TFX

FX FY 0 TFX

FX FX 0 TFX

Fq

∼=
Fq

∼=

id

From isomorphisms between the top triangle and the middle triangle, we see the middle
one is distinguished. Then by (TR4) there will exist an isomorphism FY

∼−→ FX mak-
ing the diagram commutative. This proves Fq is an isomorphism. Then since τ is the
localization functor, the unique functor θ exists.
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In this theorem, A/C := A[W−1
C ] is called the Verdier quotient and τ is the Verdier

localization map.
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