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Abstract

In this article we make the concept of a continuous family of triangles precise and prove the moduli
functor classifying oriented triangles admits a fine moduli space but the functor classifying non-oriented
triangles only admits a coarse moduli space. We hope moduli spaces of triangles can help understand
stacks.

One need only understand the stack of triangles to understand stacks. (M. Artin)
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1 The Formalism of Stacks

In this section we recall some definitions related to stacks and details can be find in [Vis].

1.1 Fibered Category

Given a base category C, a category over C actually means a functor F : D → C. If
X ∈ Ob(C), we can define its fiber along F as follows.

Definition 1.1. The fiber of X ∈ Ob(C) along the functor F : D → C is a subcategory F−1(X)
consisting of all objects Y ∈ Ob(D) such that F (Y ) = X and morphisms f : Y → Y ′ in D such
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that F (f) = idX . We thus say f is lying over idX .

Y Y ′

X X

f

F

idX

The definition above actually defines a subcategory of D. The slice category C/X
consists of objects of the form X ′ → X in C, and morphisms f : X ′ → X ′′ making the
following diagram commutative

X ′ X ′′

X

f

There is a natural projection PX : C/X → C such that PX(X
′ → X) = X ′, PX(f) = f .

A functor between two categories over C is a functor H : D → E , making the following
diagram commutative

D E

C

H

We denote the category of categories over C by Cat/C.

Theorem 1.2. There is a fully faithful embedding C → Cat/C, X 7→ C/X .

Proof. We should prove this actually defines a functor first. Given any morphism f : X →
Y in C, there is a natural functor f∗ : C/X → C/Y such that

f∗(Z
g→ X) = f ◦ g : Z → Y, f∗(Z

h→ Z ′) = Z
h→ Z ′

Note that the category C/X is over C, and the functor f∗ can make such a diagram com-
mutative which means PY ◦ f∗ = PX .

Now we prove this embedding is fully faithful. Given any functor H : C/X → C/Y
over C, PY ◦H = PX , then H(Z → X) will be some Z → Y and

H(Z → Z ′) = Z → Z ′

Hence H is actually a natural transformation Hom(−, X) → Hom(−, Y ), which will corre-
spond uniquely to a morphism X → Y by Yoneda’s lemma. Therefore

FunC(C/X, C/Y ) ∼= HomC(X, Y )
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Via this fully faithful embedding, we can identify C with a full subcategory of Cat/C.
We know in algebraic topology the definition of groupoids, which are categories with all

morphisms being isomorphisms. For any category over C, F : D → C, given a morphism
f : X → Y in C, there may not exist a morphism f ′ : X ′ → Y ′ in D such that F (f ′) = f .
Even if f ′ exists, it may not be unique. This motivates us to define the concept of groupoid
fibration.

Definition 1.3. A category over C, F : D → C is a groupoid fibration or called fibered in
groupoids, if for any f : X → Y in C and any Y ′ ∈ Ob(D) lying over Y , there is a unique
f ′ : X ′ → Y ′ in D lying over f .

X ′ Y ′

X Y

∃! f ′

F

f

The meaning of uniqueness is as follows: if f ′′ : X ′′ → Y ′ in D is also lying over f ,
then there is a unique isomorphism α : X ′′ → X ′ lying over idX , such that f ′ ◦ α = f ′′.

X ′′ X ′ Y ′

X X Y

∃! α
∼=

f ′′

f ′

F

id

f

f

Why this kind of functors is called a groupoid fibration? It’s mainly due to the following
theorem

Theorem 1.4. Assume F : D → C is a groupoid fibration, and then for any isomorphism f :
X → Y in C, f ′ : X ′ → Y ′ lying over f will also be an isomorphism in D. Hence the fiber
F−1(X) is a groupoid.

Proof. Assume f ′ is lying over an isomorphism f in C, and f has the inverse g : Y → X ,
such that f ◦ g = idY , g ◦ f = idX . For X ′ ∈ Ob(D) is lying over X , there is a unique
g′ : Y ′′ → X ′ lying over g.

Y ′′ X ′ Y ′

Y X Y

g′

f ′◦g′

f ′

g

idY

f

Hence f ′ ◦ g′ is lying over idY . But idY ′ : Y ′ → Y ′ is also lying over idY , there is a
unique isomorphism α : Y ′′ → Y ′ lying over idY such that idY ′ ◦ α = f ′ ◦ g′, which means
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f ′◦g′ = α is an isomorphism. Hence g′ has a left inverse and f ′ has a right inverse. Dually
consider

X ′′ Y ′′ X ′

X Y X

f ′′

g′◦f ′′

g′

f

idX

g

The same argument will imply f ′′ has a left inverse and g′ has a right inverse. Then g′

has a left inverse and a right inverse, hence an isomorphism. But f ′ ◦g′ is an isomorphism
and this means f ′ will be an isomorphism.

The groupoid fibration requires the lifting of a morphism in the base category is
unique. Sometimes this condition is hard to check. In the following we introduce the
concept of Cartesian arrows.

Definition 1.5. F : D → C is a category over C. A morphism f ′ : X ′ → Y ′ in D lying over
f : X → Y in C is Cartesian, if for any g′ : Z ′ → Y ′ lying over g : Z → Y and for any
h : Z → X with f ◦ h = g, there will exist a unique arrow h′ : Z ′ → X ′ lying over h such that
f ′ ◦ h′ = g′.

Z ′ X ′ Y ′

Z X Y

∃! h′

g′

f ′

h

g

f

Definition 1.6. A fibered category over C, is a functor F : D → C such that for any morphism
f : X → Y in C and any object Y ′ ∈ Ob(D) lying over Y , there is a Cartesian morphism
f ′ : X ′ → Y ′ in D lying over f .

Naturally there is a question. What’s the connection between fibered categories and
groupoid fibrations? In fact, every fibered category admits a subcategory which is a
groupoid fibration.

Lemma 1.7. Given a category over C say F : D → C, isomorphisms in D are Cartesian and the
composition of Cartesian morphisms is Cartesian.

Proof. The first part is obvious and we only prove the second part.
We assume f ′ : X ′ → Y ′, g′ : Y ′ → Z ′ are Cartesian arrows lying over f : X →

Y, g : Y → Z respectively. Given any morphism u′ : U ′ → Z ′ lying over u : U → Z,
and a morphism h : U → X such that u = g ◦ f ◦ h, we should find a unique morphism
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h′ : U ′ → X ′ lying over h such that u′ = g′ ◦ f ′ ◦ h′.

U ′ X ′ Y ′ Z ′

U X Y Z

∃! h′

u′

f ′ g′

h

u

f g

Since g′ is Cartesian, there is a unique morphism v : U ′ → Y ′ lying over f ◦h such that
u′ = g′ ◦ v. Since f ′ is Cartesian, there is a unique morphism h′ : U ′ → X ′ lying over h
such that v = f ′ ◦ h′.

Therefore every fibered category F : D → C admits a subcategory DCar consisting of
objects the same as D and morphisms being Cartesian. This subcategory is a groupoid
fibration.

Theorem 1.8. The subcategory DCar defined above is a groupoid fibration.

Proof. Given a morphism f : X → Y in C and an object Y ′ ∈ Ob(D) lying over Y , there is
a Cartesian morphism f ′ : X ′ → Y ′ in DCar lying over f . We need to prove f ′ is unique in
the sense of Definition 1.3.

If f ′′ : X ′′ → Y ′ is also a Cartesian morphism lying over f

X ′′ X ′ Y ′

X X Y

∃! h

f ′′

f ′

idX

f

f

There is a unique arrow h : X ′′ → X ′ lying over idX such that f ′ ◦ h = f ′′. Now we
only need to prove h is an isomorphism. Dually there is a unique arrow h′ : X ′ → X ′′

lying over idX such that f ′′ ◦ h′ = f ′. Then f ′ ◦ h ◦ h′ = f ′. Since f ′ is Cartesian and h ◦ h′

is lying over idX , which means h ◦ h′ is unique, then h ◦ h′ = idX′ . Dually h′ ◦ h = idX′′ . h
is an isomorphism especially a Cartesian map in DCar.

Conversely that every groupoid fibration is a fibered category is easy to prove. Ac-
cording to the discussion above, to some degree a fibered category is equivalent to a
groupoid fibration, because in a fibered category we always concern with Cartesian ar-
rows. And there is another theorem connecting them.

Corollary 1.9. A fibered category F : D → C is a groupoid fibration iff all of its fibers are
groupoids.
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Proof. The part of “⇒” is the Theorem 1.4. The part of “⇐” comes from the proof of
Theorem 1.8 above where h is automatically an isomorphism by definition.

Why we prefer the concept of fibered categories? Actually we can view a fibered
category as a functor in the sense of 2-categories, where roughly speaking the fibered
category F : C → Cat sends objects in C to categories. And in general, a category is easier
to find than a goupoid.

Definition 1.10. A pseudo-functor Φ on a category C is defined as follows
(1) For each object S ∈ Ob(C), ΦS is a category.
(2) For each arrow f : T → S in C, Φf = f ∗ : ΦS → ΦT is a funcotr.

(3) For each object S ∈ Ob(C) there is a natural isomorphism ϵS : id∗
S

∼=−→ idΦS .

(4) For each pair of arrows Q f−→ T
g−→ S, there is a natural isomorphism αf,g : f

∗ ◦ g∗
∼=−→ (g ◦ f)∗.

αf,g is canonical in the sense that

αid,g = ϵ ◦ g∗ : id∗ ◦ g∗
∼=−→ g∗

αf,id = f ∗ ◦ ϵ : f ∗ ◦ id∗ ∼=−→ f ∗

and the following diagram is commutative

f ∗g∗h∗ (gf)∗h∗

f ∗(hg)∗ (hgf)∗

f∗◦αg,h

αf,g◦h∗

αgf,h

αf,hg

Theorem 1.11. On a base category C, pseudo-functors and fibered categories are equivalent up to
isomorphism.

Proof. At first we associate every fibered category F : D → C with a pseudo-functor. For
any object S ∈ Ob(C), ΦS is defined to be the fiber F−1(S). For any morphism f : T → S
in C and object S ′ ∈ Ob(C) over S it has a Cartesian lifting f ′

S′ : T ′ → S ′ in D. This means
for any object S ′ over S, we choose some Cartesian morphism f ′

S′ . Therefore we define a
functor f ∗ : ΦS → ΦT sending the object S ′ over S to T ′ via the chosen f ′

S′ .

T ′ T ′′ S ′ S ′′

T T S S

∃! f∗u

f ′
S′ f ′

S′′

u

f

Given any morphism u : S ′ → S ′′ over idS , since f ′
S′′ is a Cartesian map and u ◦ f ′

S′

is lying over f , there will exist a unique map f ∗u : T ′ → T ′′ over idT . The uniqueness
will imply f ∗ : ΦS → ΦT is actually a functor. If T = S and f = idS , the diagram
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above with u ◦ f ′
S′ = f ′

S′′ ◦ f ∗u will imply the class of {f ′
S′ : T ′ → S ′} actually defines a

natural isomorphism ϵ : id∗
S

∼=−→ idΦS . Note that the fact f ′
S′ is an isomorphism comes from

Theorem 1.4 and 1.8.
Given a pair of arrows Q f−→ T

g−→ S, the functor f ∗◦g∗ is along the Cartesian morphism
g′S′ ◦ f ′

T ′ for any object S ′ lying over S and (g ◦ f)∗ is along (g ◦ f)′S′ . The two choices of
Cartesian maps for every object S ′ over S will naturally induce a unique isomorphism
αf,g : f ∗ ◦ g∗

∼=−→ (g ◦ f)∗ for all S ′. Such isomorphism αf,g is a natural transformation
which follows from the uniqueness. We leave readers as an exercise to check αf,g and
ϵ defined above satisfy the two canonical properties in the axiom (4) of Definition 1.10.
They follows from the uniqueness as well.

Note that for a fixed fibered category F : D → C, different choices of Cartesian mor-
phisms f ′

S′ will give isomorphic pseudo-functors.
Next let us try to describe the converse construction. Given a pseudo-functor Φ over

C we want to associate it with a fiered category F : D → C.

Ob(D) := {(s, S)|S ∈ Ob(C), s ∈ Ob(ΦS)}

A morphism (t, T )
(u,f)−−−→ (s, S) is defined to be®

f : T → S in C
u : t → f ∗s in ΦT

Now it remains to define the composition of arrows in D. Given a composable pair of
arrows

(q,Q)
(u,f)−−−→ (t, T )

(v,g)−−→ (s, S)

a new morphism (q,Q) → (s, S) has two parts g ◦ f : Q → S and

q
u−→ f ∗t

f∗v−−→ (f ∗ ◦ g∗)s
αf,g−−→∼= (g ◦ f)∗s

We can check this actually defines a category. The identity map for (s, S) → (s, S) is
actually (ϵ−1

s , idS). For instance the composable map becomes

q
u−→ f ∗s

f∗(ϵ−1
s )−−−−→ (f ∗ ◦ id∗)s

αf,id=f∗◦ϵ
−−−−−−→ f ∗s

which is just u. To check the associativity for

(q,Q)
(u,f)−−−→ (t, T )

(v,g)−−→ (s, S)
(w,h)−−−→ (q,Q)

firstly we describe (u, f) ◦
(
(v, g) ◦ (w, h)

)
.

t
v−→ g∗s

g∗w−−→ g∗h∗q
αg,h−−→ (hg)∗q

Then (u, f) ◦
(
(v, g) ◦ (w, h)

)
is just

q
u−→ f ∗t

f∗(αg,h◦g∗w◦v)
−−−−−−−−−→ f ∗(hg)∗q

αf,hg−−−→ (hgf)∗q
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For
(
(u, f) ◦ (v, g)

)
◦ (w, h), it’s

q
αf,g◦f∗v◦u
−−−−−−→ (gf)∗s

(gf)∗w−−−−→ (gf)∗h∗q
αgf,h−−−→ (hgf)∗q

Finally

αf,hg ◦ f ∗(αg,h ◦ g∗w ◦ v) ◦ u
=αf,gh ◦ f ∗(αg,h) ◦ f ∗g∗w ◦ f ∗v ◦ u
=αgf,h ◦ αf,gh

∗ ◦ f ∗g∗w ◦ f ∗v ◦ u, axiom (4) in Definition 1.10
=αgf,h ◦ (gf)∗w ◦ αf,g ◦ f ∗v ◦ u, αf,g is a natural transformation

The last equation follows from the following commutative diagram

f ∗g∗s (gf)∗s

f ∗g∗h∗q (gf)∗h∗q

f∗g∗w

αf,g

(gf)∗w

αf,gh
∗

The functor F : D → C is defined in the obvious manner, (s, S) 7→ S and (u, f) 7→ f .
Now we only need to prove F is a fibered category. Given any map f : T → S in C and
any object (s, S) over S, the Cartesian lifting is defined to be

(id, f) : (f ∗s, T ) −→ (s, S)

In fact

(q,Q) (f ∗s, T ) (s, S)

Q T S

(w,g)

(θ,h) (id,f)

h

g

f

to have (id, f) ◦ (θ, h) = (w, g),

q
θ−→ h∗f ∗s

h∗(id)−−−→ h∗f ∗s
αh,f−−→ (fh)∗s = g∗s

w = αh,f ◦ θ ⇒ θ = α−1
h,fw is unique.

In most cases it’s easier to obtain a pseudo-functor than a fibered category directly.

1.2 Descent Theory

Definition 1.12. A site is a category C (with pullbacks in general) with Grothendieck topology.
A Grothendieck topology is a function K : Ob(C) → Ob(Sets) associating every object X in C a
set of arrows {ιi : Ui → X} satisfying the following axioms
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(T1) If f : U
∼−→ X is an isomorphism, then {f : U

∼−→ X} ∈ K(X).
(T2) If {ιi : Ui → X} is a covering, then for any morphism f : Y → X , {Y ×X Ui → X} is a
covering as well.

(T3) If {ιi : Ui → X} is a covering for X and for any i ∈ I , {ϕij : Uij → Ui} is a covering for Ui

then {ιi ◦ ϕij : Uij → X} is a covering for X .

Example 1.13. In Top for any topological space X , {ιi : Ui → X} is a covering if ∪iιi(Ui) =
X and ιi’s are open immersions which means Ui → ιi(Ui) is a homeomorphism with
ιi(Ui) ⊆ X is open. Then the Grothendieck topology is just the usual topology for X .

Example 1.14. We define the etale topology for Top. In Top, an etale map p : E → X is
local heomorphism which means for every point e ∈ E there is an open neighborhood
V ⊆ E containing e such that p|V : V → p(V ) is a homeomorphism with p(V ) ⊆ X open.

A family of etale maps {pi : Ei → X} ∈ K(X) if ∪ipi(Ei) = X . (T1) is trivially satisfied
since every homeomorphism is an etale map.

(T2). We only need to prove etales maps are stable under pullbacks.

Y ×X E E

Y X

⌜ p

f

Given (y, e) ∈ Y ×X E, f(y) = p(e) then there will exist an open neighborhood U ⊆ E

containing e such that p|U : U
≈−→ p(U). Let V = f−1(p(U)) and we obtain q : (V × U) ∩

(Y ×X E) → V . We prove q is a heomorphism. At first q is surjective since for any y ∈ V ,
f(y) ∈ p(U) and there is a unique e ∈ U such that p(e) = f(y). If q(y1, e1) = q(y2, e2) then
y1 = y2 ⇒ f(y1) = f(y2) = p(e1) = p(e2). Since p|U is a heomorphism e1 = e2. Finally q is
open since for any V ′ × U ′ ⊆ V × U , q((V ′ × U ′) ∩ (Y ×X E)) = V ′ is open.

(T3) is also easy to prove because the composition of two etale maps is etale as well.

Definition 1.15 (Descent Datum). Let F : D → C be a fibered category over a site C. A descent
datum for D over a covering {ιi : Xi → X} consists of objects Ei over Xi and isomorphisms
αji : Ei|Xij → Ej|Xij over Xij i.e. in the fiber F−1(Xij) where Xij = Xi ×X Xj and Ei|Xij is
the pullback of Ei along Xij → Xi.

Xijk Xjk

Xij Xj

Xik Xk

Xi X

⌜
⌜

⌜

⌜
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(Ei, αji) satisfies the cocycle condition

Ei|Xijk

Ek|Xijk Ej|Xijk

αki αji

αjk

which means αjk ◦ αki = αji over Xijk i.e. in the fiber F−1(Xijk).
A descent datum (Ei, αji) is said to be effective if there exists some object E over X with

isomorphisms αi : E|Xi
∼−→ Ei over Xi such that

αji = (αj|Xij) ◦ (αi|Xij)
−1

A morphism f : (Ei, αji) → (E ′
i, α

′
ji) consists of a class of morphisms fi : Ei → E ′

i over Xi

such that the following diagram is commutative

Ei|Xij E ′
i|Xij

Ej|Xij E ′
j|Xij

αji

fi|Xij

α′
ji

fj |Xij

The definition above defines a category of descent datum for every covering {ιi : Xi →
X}. We denote this category by Fdes({ιi : Xi → X}). Then there is a natural functor

F−1(X) → Fdes({ιi : Xi → X}), E 7→ (E|Xi, βji)

βji is the canonical isomorphism. In Theorem 1.11, we view the fibered category F as
a pseudo-functor. Here we persist this view point and natural isomorphisms αf,g’s are
defined as in Theorem 1.11. Then for any pullback diagram

Xij Xj

Xi X

pr2

pr1
⌜

ιj

ιi

βji is defined to be

pr∗1ι
∗
iE = (E|Xi)|Xij

αpr1,ιi−−−−→∼=
(ιipr1)

∗E = E|Xij

α−1
pr2,ιj−−−−→∼=

pr∗2ι
∗
jE = (E|Xj)|Xij

Definition 1.16. A fibered category F : D → C over a site C is a prestack (resp. stack) is for any
covering {ιi : Xi → X} the natural functor F−1(X) → Fdes({ιi : Xi → X}) is fully faithful
(resp. an equivalence).

Remark 1.17. Roughly speaking the axiom for prestacks is to say morphisms between
descent datums form a sheaf. For groupoid fibrations, the morphisms are actually iso-
morphisms. A prestack is a stack iff every descent datum is effective.
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2 The Geonetry of Triangles

B

A

C

x

z < x+ y

y

A triangle is totally determined by lengths of its three edges. For any oriented triangle
which means all of its three points A, B, C are fixed, it satisfies the following equations

M :=


x+ y > z > 0

x+ z > y > 0

y + z > x > 0

In the three dimensional space R3 it’s an open cone M .

M:

y

z

x (1)

Two triangles correspond to the same point iff there is an oriented isometry between
them. The boundary of this open cone represents degenerate triangles which are just line
segments or the point. Moreover since this open cone is path connected, we see any two
triangles can be continuously deformed to become each other. Note that intuitively every
path in M defines an (oriented) continuous family of triangles. Now for simplicity to draw a
picture, we consider triangles up to similarity for a while. Then we have

x+ y > z > 0

x+ z > y > 0

y + z > x > 0

x+ y + z = 2
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which is just the equilateral triangle

and we also denote it by M .
If we replace the relation of oriented isometries by arbitrary isometries, then M should

be changed by
N := {(x, y, z) ∈ R3|0 < x ≤ y ≤ z, x+ y > z}

Its diagram up to similarity is

(0, 1, 1)

(1, 1, 0)

(1, 0, 1)

It’s actually a right triangle and we denote it by N as well.

(0, 1, 1) (1
2
, 1
2
, 1)

(2
3
, 2
3
, 2
3
)

x = y

x+ y = z

y = z

N:

(2)

Do spaces M and N contain all information of triangles especially families of triangles
up to some type of equivalence? It’s the question we mainly focus on in this section. Now
we try to make the statement above precise.

Definition 2.1. A map f : X → Y in Top is proper if it’s closed and ∀y ∈ Y, f−1(y) is compact
in X .

A map f : X → Y is proper iff it’s universally closed which means for any pullback
diagram

Z ×Y X X

Z Y

f

g

⌜
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the map Z ×Y X → Z will be closed. The proof can be found in [Tag005R]. Then it’s easy
to see proper maps are stable under pullbacks.

Definition 2.2. A (non-oriented) continuous family of triangles over a base space X is a con-
tinuous proper map F → X making F be a fiber bundle over X such that there is a distance map
d : F ×X F → R≥0 whose restriction on Fx × Fx is a metric on Fx making it isometric to a tri-
angle for any x ∈ X . Moreover for every fiber Fx we can associate it with a triple (Ax, Bx, Cx) as
endpoints of this triangle. There exists a global ordering (A,B,C) such that the induced distance
map

d′A,B (d′A,C , resp. d′B,C) : X → R≥0, x 7→ d(Ax, Bx)
(
d(Ax, Cx), resp. d(Bx, Cx)

)
is a continuous map where d(Ax, Bx)

(
d(Ax, Cx), resp. d(Bx, Cx)

)
comes from the distance map

d : F ×X F → R≥0. We say the pair (F , A,B,C) is an oriented continuous family of
triangles.

We can define a morphism between two continuous families to be a continuous map
over the base space. Then we associate every space X with a category consisting of contin-
uous families of triangles over X . But be careful here. In this category isomorphisms are
just homeomorphisms, however, any two triangles are homeomorphic! In the ordinary
case, to identify two triangles, we choose the notion of isometries instead of homeomor-
phisms. This case implies the category we defined above is not true here. Actually instead
of obtaining a usual category, we try to obtain a groupoid according to our philosophy of
identification, which proves to be more convenient.

So that an isomorphism F → G between two families should induce isometries on
fibers and then we will obtain a groupoid for every X . It’s the non-oriented viewpoint.
As for the oriented viewpoint, isomorphisms of oriented families should moreover induce
identity maps on those triples of endpoints. It’s our main idea here and it provides a new
way to think about the relation between M and N .

Any permutation of {A,B,C} induces an isometry on triangles. Since the permutation
group of three elements is S3, viewing a triangle as a family over the one point space we
may consider an action of S3 on M and it’s not difficult to see the quotient space M/S3 is
just N .

In the following let us consider the discrete case first, which means we do not view
families of triangles over X as a category but just a set of isomorphism classes.

Definition 2.3. A moduli problem M for topological spaces is a functor Topop → Sets. A
topological space M is called a fine moduli spce for M if there is a natural isomorphism M ∼−→
HomTop(−,M).

We define a moduli functor for the problem of classifying (non-oriented) continuous
families of triangles.

N : Topop → Sets, X 7→ {continuous families of triangles over X}/ ∼
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For any continuous map f : Y → X , Nf (F) is the pullback

Nf (F) F

Y X
f

⌜

Note that for every y ∈ Y , the triangle Nf (F)y is actually Ff(y). N is then the functor
for (non-oriented) families of triangles. As for oriented families, the moduli problem
M is defined such that M(X) is the set of oriented continuous families of triangles up to
isomorphism. Mf is defined by pullbacks as well and Mf (F) carries a natural orientation
from F .

Theorem 2.4. The moduli problem M admits a fine moduli space, which is just the open cone M
in the picture (1).

Proof. There is a universal family M̃ ⊆ M × R2 of triangles over M whose fiber M̃m is
just the triangle defined by endpoints A, B, C and edge lengths x, y, z described at the
beginning of this section where m = (x, y, z) ∈ M . And on the part of R2 all points of Am

coincide. It’s intuitive to see the projection M̃ → M actually defines a continuous family
of triangles which is left to readers. In the following we prove for any family F → X

there is a unique map X → M making F be the pullback Mf (M̃).
For p : F → X , there is a unique map q : X → M such that q(x) ∈ M corresponds

exactly the oriented triangle Fx. We prove q is continuous first. Suppose Z ⊆ M is closed.
q−1(Z) = p( ∪

x∈q−1(Z)
Fx). Since p is universally closed, it’s enough to prove ∪

x∈q−1(Z)
Fx is

closed. This is not difficult to understand since F → X is a fiber bundle and in a neigh-
borhood of F , triangles should not be so far away from each other. Formally speaking,
we should choose a limit point u ∈ F over some y ∈ X and to prove u ∈ ∪

x∈q−1(Z)
Fx, it’s

enough to prove the triangle Fy is in the closed subset Z.
Since distance maps

d′A,B, d
′
A,C , d

′
B,C : X → R≥0

are all continuous, for any open subset V ⊆ M containg the triangle Fy as a point, there
will be an open neighborhood U of X containing y such that q(U) ⊆ V . p−1(U) is an open
neighborhood of u hence containing some point of ∪

x∈q−1(Z)
Fx which means some point of

q−1(Z) lies in U . Then V ∩ Z ̸= ∅ and since Z is a closed subset, as a point the triangle Fy

belongs to Z.
The map F → M̃ can be defined on fibers. For every x ∈ X , there is an isomoetry

Fx → M̃q(x). All of these maps on fibers Fx can be glued to be a global continuous map
F → M̃ .

F M̃ ⊆ M × R2

X Mq

pr1p
⌜
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To see F → M̃ is continuous we should realize F → X is a fiber bundle which means
for any x ∈ X there will exist an open neighborhood U ⊆ X containing x such that

p−1(U) U × T

U

pr1

≈

p

The resulting map U × T → M × R2 is continuous. And then the canonical map F →
X ×M M̃ induces isometries on fibers hence being an isomorphism for oriented families
of triangles.

Remark 2.5. Although M is a fine moduli space classifying oriented triangles, its quotient
space M/S3 = N is not a fine moduli space classifying non-oriented triangles.

AB

I

DE

O

Consider the picture above. I is the arc D̃E and actually we may view I as the unit
interval. For a triangle T , its endpoints A, B are fixed and the third endpoint C lies in the
arc I . We define two families of triangles over I .

The first family F ⊆ I × R2 is defined such that the endpoint C goes from D to
E continuously which means the beginning triangle is △ABD and the end triangle is
△ABE.

The second family G ⊆ I ×R2 is defined such that the end point C goes from D to the
midpoint of the arc I first and then goes back from this midpoint to D. This means the
beginning and end triangles are all △ABD.

The two families are different since to construct an isomorphism F → G when the
endpoint C is in the first half part of the arc I , the induced map on fibers should be the
identity map. But when C is in the second half part, the induced map on fibers should
be the symmetry along the diameter passing through the origin O and the midpoint of I .
Such isometries on fibers can not be glued to a continuous global map F → G since there
is a dramtic change around the isosceles triangle whose end points consisting of A, B and
the midpoint of I .

Here the isomorphsm classes of F and G are different but they induce the same map
I → N since triangles △ABD and △ABE are identified in N . Therefore N is not a fine
moduli space. We will prove later that N is a so called coarse moduli space.
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Remark 2.6. From the Remark 2.5 we know isosceles triangles prevent N from being a
fine moduli space. Actually the moduli functor N ′ classifying non-oriented scalene trian-
gles (all edges has different lengths) admits a fine moduli space N ′, whose picture up to
similarity is

(0, 1, 1) (1
2
, 1
2
, 1)

(2
3
, 2
3
, 2
3
)

x = y

x+ y = z

y = z

N’:

(3)

A family F of scalene triangles over X has a natural ordering (A,B,C) such that
AxBx < AxCx < BxCx. An isomorphism between non-oriented families of scalene tri-
angles preserves these natural orderings so that from Theorem 2.4 we know the moduli
functor classifying scalene triangles is fine.

For a fine moduli functor M its corresponding functor is actually PM : Top/M → Top.

Theorem 2.7. No matter for the usual topology or the etale topology described in Example 1.14,
the category Top/M over Top is a stack.

Proof. PM : Top/M → Top is a groupoid fibration. Consider the diagram

x′ x y : Top/M

X X Y : Top
f

f ′

PM

f ′′

where x′, x : X → M and y : Y → M represent morphisms with the target M . Then f ′

is actually the map f and is unique. Therefor for any other lifting f ′′ over f , the unique
lifting id over idX satisfies f ′ ◦ id = f ′′ = f .

Whenever Top is endowed with a subcanonical topology which means for any space
X , the representable functor HomTop(−, X) is a sheaf, Top/M is a stack. Then this theo-
rem follows from Lemma 2.8.

For any covering {pi : Ei → X}, given a descent datum (ei, αji) where ei : Ei → M
since αji is over Eij i.e. in the fiber of Eij , αji = id. Then the cocycle condition is trivial.
ei|Eij = ej|Eij . From the sheaf axiom there will exist a unique morphism e : X → M
whose restriction on Ei is ei. This proves every descent datum is effective. The fully
faithfulness follows from the sheaf axiom directly.

Lemma 2.8. With the etale topology for any space Y , the representable functor HomTop(−, Y ) :
Top → Sets is a sheaf.

Proof. Given an etale covering {pi : Ei → X} and maps fi : Ei → Y such that fi|Eij =
fj|Eij , there will be a set theoretical map f : X → Y such that for any x = pi(ei) in X ,
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f(x) = fi(ei). It’s well defined since pullbacks of fi’s coincide. This analysis also implies
f is unique.

To prove f is continuous suppose V ⊆ Y is open. Then f−1(V ) = ∪ipi(f
−1
i (V )) is open

since an etale map (local homeomorphism) is an open map.

Definition 2.9. A moduli functor N : Topop → Sets admits a coarse moduli space N if there
is a natural transformation α : N → HomTop(−, N) such that

(1) α(∗) : N ∼−→ HomTop(∗, N) = N .
(2) For any another transformation β : N → HomTop(−, Y ) there is a unique natural transfor-
mation θ∗ : HomTop(−, N) → HomTop(−, Y ) induced by θ : N → Y satisfying θ∗ ◦ α = β.

N HomTop(−, N)

HomTop(−, Y )

β

α

∃! θ∗

From the definition we see coarse moduli spaces are unique.

Theorem 2.10. The moduli functor N classifying non-oriented triangles admits the coarse moduli
space N described in the picture (2).

Proof. For any concrete (not up to isomorphism) continuous family F of triangles over X
since it admits an ordering, it induces a map X → M . Composed with M → M/S3 = N ,
the map X → N is well defined for the isomorphism class of F . This defines a natural
transformation α : N → HomTop(−, N) and clearly α(∗) is a bijection. Via α the subfamily‹N = M̃ ∩ (N ×R2) is sent to the identity map idN . Such family over N is called a modular
family.

Given any other transformation β : N → HomTop(−, Y ), if θ∗ exists then it must send
idN to β(‹N) ∈ HomTop(N, Y ) which means θ = β(‹N) by Yoneda’s lemma. Therefore we
only need to prove β(‹N)∗ making such a diagram in Definition 2.9 commutative.

Over the one point space
N (∗) N

Y

α
∼=

β
µ

since α(∗) is a bijection there exists a unique set theoretical map µ : N → Y making the
diagram commutative. For any pointed space (X, x), it represents a function x : ∗ → X .

F ∈ N (X) HomTop(X,N)

HomTop(X, Y ) N (∗) N

Y

β

β

x∗

α

µ

α

x∗
µ∗
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We want to prove µ ◦ α(F) = β(F). But since

x∗ ◦ µ∗ ◦ α = µ ◦ x∗ ◦ α
= µ ◦ α ◦ N (x)

= β ◦ N (x)

= x∗ ◦ β

this means µ ◦ α(F) and β(F) have the same value on x ∈ X ,

∗ X N Y
x α(F) µ

β(F)

and we obtain µ ◦ α(F) = β(F). Moreover let F = ‹N and then α(‹N) = idN ⇒ µ = β(‹N)
is continuous.

Remark 2.11. From Remark 2.6 and Theorem 2.10 we may guess the moduli functor clas-
sifying isosceles triangles admits the coarse moduli space. Its coarse moduli space is
actually an open inverval such as (0, π). But note that in general modular families are not
unique.1

2.1 Quotient Stacks

In algebraic topology for any group G there exists its classifying space K(G, 1) = BG
unique up to homotopy such that there are natural bijections

[X,BG]
∼−→ H1(X;G)

for any CW-complex X where [X,BG] denote the homotopy classes of continuous maps
from X to BG. The base space BG admits the universal covering p : EG → BG. Moreover
we have isomorphisms of groups

π1(BG, ∗) ∼= Aut(p) ∼= G

so that the space EG carries a free action (on the right) of the group G by covering trans-
formation. Via this action G acts transitively on fibers p−1(∗). Then p is the quotient map
by G and BG = EG/G.

In tradition if G acts on X (on the left) non-freely, we does not define the quotient
space of X to be X/G in the usual sense. In fact we define the quotient space [X/G] to be
the quotient of EG×X by the diagonal action g · (y, x) = (y · g−1, g ·x) so that the quotient
map EG×X → [X/G] is a principal G-bundle.

Definition 2.12. Suppose a topological group G acts trivially on X . A principal G-bundle or G-
torsor is a continuous map p : E → X where E is a non-empty G-space with the multiplication
ρ : E → G → X such that

1See [Beh, Sec. 1.5].
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(1) the diagram

E ×G E X
ρ

pr1

p

is a coequalizer.
(2) p is locally trivial i.e. there is an open covering {Ui → X} such that

p−1(Ui) Ui ×G

Ui

≈

pr1
p

A classical theorem of algebraic topology asserts that BG classifies principal G-bundle
over CW-complexes which means for any principal G-bundle E over a CW-complex X
there will exist a map X → BG unique up to homotopy such that E ≈ X ×BG EG. That’s
the main reason why we define the quotient space for a non-free action of G on X by
[X/G]. If X = ∗ is the one point space, ∗/G = ∗ but [∗/G] = BG contains the information
of principal bundles.

Lemma 2.13. Any morphism of principal G-bundles is an isomorphism.

Proof. Given a map f : E → E ′ of principal G-bundles, we suppose E = E ′ = X × G is
trivial first.

X ×G X ×G

X

≈
f

pr1
pr1

Then f(x, g) = (x, u(x) · g). Clearly u : X → G is a continuous map. Then the inverse of f
is defined to be (x, g) 7→ (x, u(x)−1 · g). Hence the equivariant map f is an isomorphism.
Since principal G-bundles are locally trivial, in general f is an isomorphism.

For any space X we associate it with the groupoid of principal G-bundles over X
denoteed by PGX . If G is clear, then it’s written as PX simply. For any map f : Y → X
the functor P(f) : PX → PY is defined by the pullback along f . Then it’s especially
a pseudo-functor. From Theorem 1.11, its fibered category BG → Top, where we use
the symbol BG to denote the category G-torsors in tradition, consists of objects principal
G-bundles E → X and its arrows are commutative diagrams

E ′ E

X ′ X

with an isomorphism E ′ ∼−→ X ′ ×X E. Note that E ′ → E is a G-equivariant map.

Theorem 2.14. The fibered category BG → Top of G-torsors is a stack.
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Proof. Given an open covering {ιi : Ui → X} and a morphism f : (Ei, αji) → (E ′
i, βji)

of descent datums such that (Ei, αji) and (E ′
i, βji) are induced by two global principal

G-bundles E, E ′ over X respectively, then αji and βji should be idnrity maps. Since any
representable functor over Top with the usual topology is a sheaf, from the sheaf axiom
fi’s can be glued to a unique map f : E → E ′.

Given a descent datum (Ei, αji) over an open covering {ιi : Ui → X}, we define
E =

∐
Ei/ ∼ where ei ∈ Ei ∼ ej ∈ Ej if αji(ei) = ej . The induced map p : E → X is a

principal G-bundle since axioms of G-torsors are local and its restriction on Ui is actually
Ei.

In tradition for a principal G-bundle E over Y , G acts on the right. Now we suppose
for a given space X , G acts on the left. Then a G-equivariant map f : E → X should
satisfy f(e · g) = g−1 · f(e). Actually for the left G-space X it has a natural right G-space
structure defined by x · g = g−1 · x.

For a left G-space X the quotient stack [X/G] is defined as follows its objects are princi-
pal G-bundles E → Y with a G-equivariant map E → X and morphisms are commutative
diagrams

E ′ E

Y ′ Y

with an isomorphism E ′ ∼−→ Y ′ ×Y E such that the composition of E ′ → E → X is just the
E ′ → X . Then it’s not difficult to see [X/G] is actually a stack and moreover [∗/G] = BG.

As explained before the moduli functor N classifying non-oriented triangles is actu-
ally a groupoid fibration whose objects are continuous families of non-oriented triangles
and morphisms are diagrams

F ′ F

X ′ X

where F ′ → F induces isometries on fibers so that the natural map F ′ → X ′ ×X F is an
isomorphism between families of non-oriented triangles.

Theorem 2.15. The fibered category N is equivalent to the quotient stack [M/S3].

Sketch of the proof. For a space X with an action of the group G, its quotient stack [X/G] is
actually the coequalizer for

X ×G X
ρ

pr1

in the category of stacks. And we just need to notice that N is the quotient of M with the
action S3 when viewed as stacks.
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2.2 Deformation Theory for Triangles

Definition 2.16. Let (X, x0) be a pointed space and then a deformation of a triangle T over
(X, x0) is defined to be a pair of maps

T
i−→ F f−→ X

such that
(1) fi(T ) = x0.
(2) There exists an open neighborhood U ⊆ X containing x0 such that f−1(U) → U is a continu-
ous family of triangles.

(3) The map i : T → f−1(x0) is an isometry.
Two deformations

T
i−→ F f−→ X, T

j−→ G g−→ X

of the triangle T over (X, x0) are equivalent if there exist an open neighborhood U ⊆ X containing
x0 and the following commutative diagram

T f−1(U)

g−1(U) Ug

fj

i

where the diagonal map is an isomorphism between families of triangles.

For every pointed space (X, x0) we denote the set of equivalent classes of deformations
of T by DefT (X, x0). Then it’s clear for any open neighborhood U ⊆ X containing x0,
DefT (X, x0) = DefT (U, x0).

Given a deformation ξ : T
i−→ F f−→ X for any pointed map g : (Y, y0) → (X, x0) the

pullback g∗ξ is defined to be

g∗ξ : T
(i,y0)−−−→ F ×X Y

pr2−−→ Y

This induces a well-defined morphism DefT (X, x0) → DefT (Y, y0).
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