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Abstract
These notes consist of two parts. In the first part we discuss some equivalent characterizations for local

systems and their generalizations to higher cases. In the second part we study the (derived) moduli theory
for local systems. And there are some questions I want to figure out in my future study.
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1 Some Characterizations for Local Systems

1.1 Results from Algebraic Topology

Generally speaking for a topological space X a local system F on X is a locally constant sheaf on the site U(X)
which means there is a covering {Ui → X|i ∈ I} such that on each Ui, F is a constant sheaf.

Suppose A is any set, abelian group or commutative ring. Then there is a notion of constant presheaf
which sends any open subset of X to A and constant sheaves are the shifification of constant presheaves.
If U is an open subset of X , we see sections of the constant sheaf AX of A on U consist of sections U →∐

x∈X A ≈ A×X where A is equipped with discrete topology. Since they should be continuous, we have

AX(U) = {locally constant functions s : U → A}

There is another characterization for local systems. We know a sheaf can be viewed as a bundle over X
which is just a map from some top space to the base space X . For a sheaf F on X its associated bundle is∐

x∈X Fx → X . And for any bundle E → X we can have a presheaf sending every open subset U of X to
the set of sections U → E. From these we obtain the following theorem.
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Theorem 1.1.1. There is an equivalence between sheaves and étale maps over X i.e. Shv(X) ∼= Étale/X . Moreover
stalks of sheaves are isomorphic to fibers of étale maps.

Definition 1.1.2 (étale map). A continuous map p : E → X is an étale map if it’s a local homeomorphism
which means for any point e ∈ E there is an open subset e ∈ V ⊆ E such that p|V : V → p(V ) is a
homeomorphism with p(V ) open in X .

We have already known local systems are special sheaves so that they correspond with some certain
type of étale maps. Look at constant sheaves. Their bundles are like A×X ≈

∐
a∈A X → X . So the bundle

of a local system will look like this locally.

Definition 1.1.3 (covering space). A continuous map p : X̃ → X is a covering projection if for any point
x ∈ X there exists an open subset x ∈ U ⊆ X such that p−1(U) is the disjoint union of open subsets in X̃
each of which is mapped homeomorphically onto U by p.

Theorem 1.1.4. There is an equivalence between local systems on X and covering spaces on X i.e. LocSys(X) ∼=
Cov/X .

Sketch of the proof. To see this we first suppoe p : X̃ → X is a covering projection. Then for x ∈ U ⊆ X , we
have p−1(U) =

∐
i∈I Vi ≈ I × V where Vi = V ≈ U . Then sections U → I × V will just be locally constant

functions U → I . So that restriction to U the sheaf associated with p is a constant sheaf of I .
Conversely let F be a local system on X . Then on U ⊆ X , F is a constant sheaf with respect to I . For

p :
∐

x∈X Fx → X , we have p−1(U) =
∐

x∈U Fx ≈ I × U ≈
∐

i∈I U .

The identification above makes it possible for us to use techniques from algebraic topology to study
local systems.

In algebraic topology a Hurewicz fibration or simply a fibration is a continuous map p : E → X such
that it has the right lifting property with respect to (RLP wrt) all i0 : Y → Y × I where I = [0, 1] is the
unit interval. We say it has the unique path lifting property if with respect to ∗ → I the lifting map is unique.
In [18, Thm. 2 and 3 in P67] we see that a covering projection is a fibration with the unique path lifting
property. Now using this property we can compare fibers of a covering space.

Let p : X̃ → X be a covering projection and ω a path from x0 to x1. From ω we have a function

Fω : p−1(x0)× I → X, (x̃, t) 7→ ω(t)

Then with respect to i0 : p−1(x0) → p−1(x0)× I ,

p−1(x0) X̃

p−1(x0)× I X

i0 pGω

Fω

there is a lifting Gω : p−1(x0) × I → X̃ such that p ◦ Gω(x̃, t) = ω(t). Therefore Gω(x̃, 1) is an element in
p−1(x1) and this defines a function Gω(−, 1) : p−1(x0) → p−1(x1).

For any second path ω′ from x0 to x1 such that ω ≃ ω′ rel ∂I , we will obtain the same point in p−1(x1)

since their liftings will be homotopic relative to ∂I in X̃1 And one can prove we have defined a functor
Π1(X) → Set sending a point x ∈ X to p−1(x) where Π1(X) is the fundamental groupoid of X . So that the
obtained map Gω(−, 1) is an isomorphism.

The argument above shows for a local system on X if there is a path from x0 to x1 then their stalks will
be isomorphic to each other. This is similar to the notion of parallel transport in differential geometry which
we will discuss later.

1 [18, Lem. 3 in P72]
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Now naturally there is a question whether every functor Π1(X) → Set can be obtained in such a way.
The answer is positive if X is good enough2.

Theorem 1.1.5. If X is good enough, then there is an equivalence between local systems on X and functors Π1(X) →
Set, i.e. LocSys(X) ∼= Funct(Π1(X),Set).

Sketch of the proof. Given a functor F : Π1(X) → Set we can define a presheaf F̃ on X such that for every
open subset U ⊆ X , F̃ (U) consists of all functions f : X →

∐
x∈X F (x) satisfying f(x) ∈ F (x) and for any

path ω in U we have f(ω(1)) = F (ω)(f(ω(0))). Clearly F̃ is a sheaf from the paracompactness. Moreover
by considering how F̃ behaves on connected open subsets we can see it’s actually a local system.

Question 1. What are ∞-local systems? For a topological space X , Sing•(X) is a Kan complex i.e. an
∞-groupoid which acts like Π∞(X). A generalization for Funct(Π1(X),Set) is ∞-Funct(Sing•(X), sSet).
But on the other hand a local system is a locally constant sheaf so that its natural generalization should be
a locally constant ∞-stack U(X)op → sSet. Are they still equivalent at the infinite level? The nlab page of
locally constant ∞-stack is helpful to answer this question.

1.1.1 Representations of Fundamental Groups

Here we give another characterization for local systems.
Now if we fix a point x0 in X , then there is a functor of fibers

Fibx0
: Cov/X → Set, p 7→ p−1(x0)

As we have seen, a covering space p : X̃ → X induces a functor Π1(X) → Set. Every loop ω in π1(X,x0)
will correspond to an isomorphism p−1(x0) → p−1(x0). The image of x̃ via this isomorphism is denoted by
ω · x̃. Then we can see p−1(x0) is actually a π1(X,x0)-set and the action is called the monodromy action on
the fiber.

Definition 1.1.6. A representation for a group G is a group homomorphism G → Aut(M) where M is some
set. This is equivalent to a G-set structure on M . So that Rep(G) = G-Set. If A is a commutative ring,
an A-representation for G is a group homomorphism G → AutA(M) for some A-module M and we have
RepA(G) = G-ModA.

Theorem 1.1.7. If X is good enough3, the functor

Fibx0
: Cov/X → Rep(π1(X,x0)), p 7→ p−1(x0)

is an equivalence between covering spaces on X and representations of π1(X,x0). Moreover we can see Aut(Fibx0
) ∼=

π1(X,x0).

Sketch of the proof. To see this, given any π1(X,x0)-set S we decompose it as a disjoint union of π1(X,x0)-
orbits. Then for every orbit we have a quotient space of the universal covering space X̃u by the stabilizer of
some point in the orbit. Then the disjoint union of these quotients is just what we want. Fully faithfulness
and details can be found in [19, Thm. 2.3.4].

We summarize results we have obtained until now as follows.

Theorem 1.1.8. If X is good enough, the following categories are equivalent:

1. local systems on X i.e. LocSys(X);

2According to [18, Ex. F.4 in P360], the space X should be paracompact, Hausdorff, connected, locally path connected and semilo-
cally 1-connected, e.g. a connected complex manifold.

3At least X should be connected, locally path connected and semilocally 1-connected, so that it will admit the universal covering
space.
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2. covering spaces on X i.e. Cov/X ;

3. functors from the fundamental groupoid of X to sets i.e. Funct(Π1(X),Set);

4. representations of the fundamental group i.e. Rep(π1(X,x0)).

Note that we can replace Set by ModA for any commutative ring A in which case an A-local system
should be a locally constant AX -sheaf where AX is the constant sheaf of A.

More generally if we consider a discrete group G not a commutative ring A and replace Set by the
category of G-sets where G acts transitively, then we obtain three equivalent characterizations as follows:

1. locally constant sheaves on X such that GX acts on them transitively;

2. principal G-bundles over X such that parallel transports induced by homotopy classes of paths in X
are G-equivariant;

3. functors from the fundamental groupoid of X to G-sets where G acts transitively.

We call these geometric objects G-local systems.
If we set G = GLn(k) for some field k, since for a sheaf F , Aut(F )-torsors are equivalent to Twist(F )

twists of F which are locally isomorphic to F 4, a GLn(k)-local system is just a locally constant sheaf of
k-vector spaces of rank n.

Question 2. Are there local systems of some type equivalent to representations of étale fundamental groups
i.e. Galois representations? I think this can help understand how we can get geometric Langlands conjec-
ture from arithmetic Langlands conjecture on the Galois side.

1.2 Riemann-Hilbert Correspondence

1.2.1 Classical Case

As we have seen a local system is roughly a collection of objects with the notion of parallel transports within
them. In differential geometry parallel transports are induced by connections5 so that some certain kind of
connections may be equivalent to local systems. Now we can suppose X is a connected complex manifold
or a smooth projective algebraic variety over C and in the latter case we need to consider the complex
analytic space Xan of X .

A holomorphic vector bundle over X is a complex manifold E with a holomorphic map π : E → X such
that its fiber π−1(x) is isomorphic to a finite dimensional C-vector space for every x ∈ X and satisfies some
certain compatible conditions. And this definition will be equivalent to locally free OX -sheaves where OX is
the sheaf of homolomorphic functions. And we will not distinguish the two definitions.

Definition 1.2.1 (connections). A (holomorphic) connection on X is a pair (E,∇) where E is a holomorphic
vector bundle and ∇ : E → Ω1

X ⊗OX
E is a map of sheaves such that

∇(f · s) = df ⊗ s+ f · ∇(s)

for f ∈ OX and s ∈ E. This map extends naturally to

∇n : Ωn
X ⊗OX

E → Ωn+1
X ⊗OX

E, ω ⊗ s 7→ dω ⊗ s+ (−1)nω ∧∇(s)

A connection is called flat or integrable if ∇n+1 ◦ ∇n = 0 which is equivalent to ∇1 ◦ ∇0 = 0.
4They are both isomorphic to the first cohomology group of Aut(F ). It’s a standard theorem in algebraic geometry, see e.g. Ulrich

Gortz and Torsten Wedhorn, Algebraic Geometry I, Sec. 11.6
5There is a concept of Ehresmann connection in differential geometry. Details can be found in the Chapter 12 of Jeffrey M. Lee,

Manifolds and Differential Geometry. Theorem 12.20 there gives such a parallel translation for a connection and a smooth path.
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Theorem 1.2.2 (Riemann-Hilbert Correspondence). 6 The category of finite dimensional complex local systems
on X is equivalent to the category of holomorphic vector bundles on X with a flat connection i.e. LocSysC(X) ∼=
Flat(X).

Sketch of the proof. For a flat connection (E,∇) its kernel ker ∇ will be a complex local system with an iso-
morphism OX ⊗CX

ker ∇ ∼−→ E where CX is the constant sheaf of C on X . Conversely for a complex local
system F , we can consider OX ⊗CX

F with the connection dX ⊗ idF .

This result depends heavily on the complex topology of X . JIn particular this correspondence tells us
that there is an equivalence between flat connections and finite dimensional complex representations of
π1(X,x0).

1.2.2 Derived Case

In [13] Lurie says we can drop the assumption of “projective” and just suppose X is a smooth algebraic
variety over C. Then we can embed X into a smooth projective algebraic variety X . From this, a holo-
morphic vector bundle on Xan can be equipped with an algebraic structure by restriction due to Serre’s
GAGA theorem for X

an
and X i.e. it corresponds with an algebraic vector bundle on X which is moreover

compatible with connections.7

So that the classical Riemann-Hilbert correspondence gives an equivalence between complex local sys-
tems on Xan and algebraic vector bundles on X with flat (regular) connections. In this case complex local
systems are locally free CX -vector spaces and algebraic vector bundles are locally free OX -modules. If we
want to drop the condition of “locally free”, we will need to go much further than the classical case.

Let E be a quasi-coherent OX -module on X . Then a flat connection ∇ : E → Ω1
X ⊗OX

E is equivalent
to a map (Ω1

X)∨ → EndC(E) satisfying certain conditions. Note that

(Ω1
X)∨ = HomOX

(E,OX) = DerC(OX ,OX)

DX is defined to be the subalgebra (not necessarily commutative) of EndC(OX ,OX) generated by OX and
(Ω1

X)∨. Then a flat connection will be equivalent to a left algebraic DX -module structure on E8.
On the other side we generalize local systems on Xan to constructible sheaves which can be roughly

understood as “locally” locally constant sheaves.

Definition 1.2.3 (constructible sheaf). For a complex analytic space Xan a stratification is a locally finite
partition Xan =

∐
α∈A Xan

α by locally closed complex analytic subsets Xan
α such that every closure Xan

α is
a disjoint union of some Xan

β ’s.
A CXan -module is a constructible sheaf if when restricted to some stratification on Xan, it’s a locally

constant sheaf on every Xan
α . Note that the existence of stratification is due to Whitney.

Passing to derived categories there are de Rham and solution functors i.e.

DRX : Db(DX) → Db(CXan), M 7→ ωan
X ⊗L

DXan Man

and
SolX : Db(DX) → Db(CXan)op, M 7→ RHomDXan (M

an,OXan)

where ωX is the canonical bundle of X .
Riemann-Hilbert correspondence says they are equivalences from Db

rh(DX) the subcategory of Db(DX)
consisting of bounded complexes of D-modules whose cohomology groups are regular holonomic D-modules

6 [7, Thm. 2.6]
7Deligne has proved the analytification functor gives an equivalence between (regular) algebraic flat connections on X and analytic

or holomorphic flat connections on Xan. See e.g. [10, Thm. 5.3.8].
8 [10, Lem. 1.2.1]
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to Db
c(X) the subcategory of Db(CXan) consisting of bounded complexes of CXan -modules whose coho-

molopgy groups are constructible sheaves. Moreover the image of DX -Modrh by DRX is an abelian cate-
gory in Db

c(X) consisting of perverse sheaves9.

1.2.3 Differential Graded Case

As we have seen, classical Riemann-Hilbert correspondence establishes an equivalence between flat con-
nections and complex representations of π1(X,x0) for a connected complex manifold X . But it seems it’s
only a truncated version because π1(X,x0) or Π1(X) does not contain all homotopy information of X . So
the higher version of Riemann-Hilbert correspondences tries to get a similar relationship for higher flat con-
nections and ∞-local systems. In [4] the authors work on a real manifold but this makes no big difference
when considering a complex manifold (see [6, Sec. 8.2]) and we only need to replace the de Rham algebra
by the Dolbeault algebra. For simplicity we also take X as a (connected) real manifold.

In the classical theory a local system is a functor Π1(X) → Set. Here we replace the fundamental
groupoid Π1(X) by the smooth ∞-groupoid Π∞(X) := Sing∞• (X) whose sections consist of smooth sim-
plices. Since we consider real local systems, we need to replace Set by some ∞-category of real vector
spaces. In [4] this desired ∞-category C∞ is obtained from C := Ch•(R) by taking H≤0 on internal hom-
complexes, Dold-Kan equivalence and simplicial nerve (see [4, Rem. 2.5]). Then real ∞-local systems are
defined to be ∞-functors i.e. maps of simplicial sets from Π∞(X) to C∞. This category is denoted by
LocSys∞C (X) which is actually a dg-category ( [4, Prop. 2.8]).

On the other side we need to extend the usual concept of connections to superconnections. Let Ω =
(Ω•(X), d) be the de Rham differential graded algebra on X . In the classical case a connection is a locally
free sheaf E with a derivation map on E ⊗ Ω•

X of degree 1. And in algebraic geometry we know a locally
free sheaf of finite rank is equivalent to a finite projective module. So that here we suppose E• is a bounded
complex of finitely generated projective Ω0(X)-modules and view it as a dg-vector bundle.

Definition 1.2.4. We say a pair (E•,E) is a cohesive module or a dg-vector bundle with a superconnection if E is
a Z-graded connection on E• ⊗Ω0(X) Ω

•(X) of degree 1 satisfying the usual Leibniz condition i.e.

E(eω) = (E(e⊗ 1))ω + (−1)deg(e)edω

This superconnection is flat if dE+ E2 = 0. The category of cohesive modules is denoted by PΩ.

In [4] the authors define a really complicated functor RH : PΩ → LocSys∞C (X)10 and prove it’s a quasi-
equivalence of dg-categories so that they are equivalent in Ho(dgCatR).

The approach to the problem taken by [6] is a bit different where ∞-local systems are regarded as some
kind of locally constant dg-sheaves and cohesive modules are replaced by perfect twisted modules which are
actually shown equivalent to the former [6, Cor. 3.1].

1.3 Crystals

We should remember a local system is roughly a collection of objects within which there exist parallel
transports for paths. But in a smooth algebraic variety X it’s equipped with Zariski topology which is
much different from usual topologies like complex topology so that the usual concept of paths is not valid
here.

For a complex manifold it’s semilocally 1-connected or locally simply connected which means every
point in it admits a simply connected open neighborhood. Since parallel transports are given by homotopy
classes of paths, fibers over this simply connected open neighborhood will be canonically isomorphic to
each other. But this is not the case in the Zariski topology. In [12] Lurie says there is no simply connected

9There is another description for perverse sheaves in [10, Sec. 8] using t-structures.
10This requires a deep analysis of (higher) holonomy.
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open subsets in a smooth curve of genus > 0 (need a proof!). So that we need a new way to say two
points are close enough i.e. “in a simply connected open subset”, and the parallel transport is canonical. In
Grothendieck’s language the former is to say they are infinitesimally close and the latter is equivalent to the
cocycle condition.

We suppose X is a smooth algebraic variety over a field k of characteristic zero e.g. C. For a commuta-
tive k-algebra R, its nilradical ideal is IR = ∩

p∈SpecR
p consisting of nilpotent elements. We say two R-valued

points x, y ∈ X(R) are infinitesimally close if they have the same image under the map X(R) → X(R/IR).
Note that since SpecR and SpecR/IR are homeomorphic in terms of underlying topological spaces, two
infinitesimally close points x, y induce the same map SpecR → X on underlying topological spaces.

Definition 1.3.1 (crystal). A crystal of quasi-coherent sheaf on X is a pair (F , ηx,y) where F is a quasi-coherent
sheaf on X and ηx,y : x∗F → y∗F is an isomorphism of quasi-coherent sheaves on SpecR for two infinites-
imally close points x, y ∈ X(R) such that

1. for a map R → R′, x, y induce two new infinitesimally close points x′, y′ ∈ X(R′) and they satisfy

ηx′,y′ : x′∗F ≃ x∗F ⊗R R′ → y∗F ⊗R R′ ≃ y′∗F

is obtained from ηx,y by tensoring R′;

2. ηx,y satisfies the cocycle condition i.e. ηx,z ≃ ηy,z ◦ ηx,y and ηx,x = id.

Note that x∗F is obtained by the pullback of F along x. We also write F (x) for x∗F .

Theorem 1.3.2. The category of crystals of quasi-coherent sheaves on X is equivalent to the category of quasi-coherent
left DX -modules.

We know flat connections are equivalent to DX -module structures. Hence crystals of quasi-coherent
sheaves are then also equivalent to flat connections as an algebraic replacement. From this viewpoint crys-
tals are a good notion for algebraic parallel transports.

Sketch of the proof. We sketch the idea here and details can be found in [12, Thm. 0.4].
Suppose F is a quasi-coherent sheaf on X . For two points x, y ∈ X(R) they induce a map SpecR →

X×X . They are infinitesimally close iff the induced map SpecR/IR → X×X forctors through the diagonal
map ∆ : X → X ×X . By considering the formal completion (X ×X)∨ of the locally closed immersion ∆
i.e. the ind-scheme or “colimit” of X ⊆ X(2) ⊆ · · · ⊆ X(n) ⊆ · · · ⊆ X × X , Lurie shows an isomorphism
ηx,y is equivalent to a map F → pr

(n)
1,∗ pr

(n),∗
2 F and then equivalent to D≤n

X ⊗OX
F → F where pr

(n)
i ’s are

projections from (X ×X)∨ to X when restriction to X(n). And the cocycle condition will be equivalent to
the associative algebra axiom of the DX -action.

We can define the concept of quasi-coherent sheaves on an arbitrary functor X : Algk → Set which is a
pair (F (x), αx,x′) where for any point x ∈ X(R), F (x) is an R-module and if R → R′ is a map of k-algebras
and x′ ∈ X(R′) is the image of x, then αx,x′ : F (x′) ≃ F (x)⊗R R′ is an isomorphism of R′-modules. Note
that this pair should satisfy the compatible condition for R → R′ → R′′. If X is actually a scheme, then it
will be covered by open affine schemes and the quasi-coherent sheaf on it will be glued by these modules
on an open affine covering. Hence this definition generalizes the classical definition for quasi-coherent
sheaves.

With this definition we can see a crystal on X is actually equivalent to a quasi-coherent sheaf on the
de Rham stack XdR which sends any algebra R to the set X(R/IR). Note that ηx,y’s identify an R/IR-
module canonically and we can lift such a module to be an R-module. Moreover for a smooth scheme
X , X(R) → X(R/IR) is surjective according to the lifting property of smoothness. Therefore the natural
map X → XdR is an epimorphism and in this sense we can view XdR as a quotient of X by the relation of
“infinitesimal closeness”.
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This feature can help us generalize the concept of crystals to the higher case. For a prestack X :

cdgA≤0
k → sSet, where cdgA≤0

k is the category of cdgas (commutative differential graded algebras cen-
tered in degree n ≤ 0), its de Rham prestack XdR can be defined such that

XdR(A
•) = X(H0(A•)/IH0(A•))

In [8] Gaitsgory and Rozenblyum say “the key idea is that one should regard higher homotopy groups of
a derived ring as a generalization of nilpotent elements.” So that we do not let XdR(A

•) be X(A•/IA•).
Then a (left) crystal on X will be defined as a quasi-coherent sheaf on XdR. And they also generalize the two
phenomena we talked above to this derived case. They show if X is good enough i.e. eventually coconnective
which means Hn(OX) ̸= 0 for only finitely many n’s, then this definition for crystals will be equivalent to
Grothendieck’s version of infinitesimal closeness (see [8, Prop. 3.4.3]). And they describe relations between
crystals and D-modules as well in this derived case (see [8, Sec. 5]).

Question 3. In the above we have seen the differential graded Riemann-Hilbert correspondence on a
smooth or complex manifold. Does it still hold on a higher analytic stack? Moreover by the higher GAGA
theorem described in [15], whether we can obtain a result similar to Deligne’s theorem in the classical case.
In other words, what’s the relation between crystals on a higher geometric stack X and flat superconnec-
tions or ∞-local systems on its analytification Xan? Another version of Riemann-Hilbert correspondence
in [21] may be helpful (not sure).

Question 4. What are local systems on an analytic stack? Recently there is a theory of analytic stacks
developed by Clausen and Scholze. An analytic stack is a prestack AnRing → sSet on analytic rings
satisfying the descent for !-hypercovers. This concept unifies two notions in [15] i.e. higher complex/non-
achimedean analytic stack in the sense that there are natural analytic rings corresponding to (compact Stein)
complex-analytic spaces, and affinoid Berkovich analytic spaces; and open covers or quasi-étale maps go to
!-covers. So whether there is a good theory of local systems on this analytic stack?

2 Moduli Theory for Local Systems

2.1 Some Classical Approaches

Via GIT In [17] Simpson uses the technique of Mumford’s GIT theory to construct Betti moduli space
MB, Dolbeault moduli space MDol and de Rham moduli space MdR parametrizing representations of the
fundamental group, Higgs bundles and vector bundles with a flat connection respectively for a complex
manifold or a smooth projective algebraic variety X on C. Note that these moduli spaces are coarse in the
sense of Mumford. He also shows some topological equivalences among these moduli spaces. The clas-
sical Riemann-Hilbert correspondence can therefore give an equivalence Man

B (X) ≃ Man
dR (X) of complex

analytic spaces.

Remark 2.1.1. These moduli spaces are based on the (coarse) moduli space of coherent sheaves. But to
obtain the latter we need to only consider about (semi-)stable sheaves since they form a bounded family
but all sheaves without the (semi-)stable condition are not bounded. For example we can consider the set
{O(n)⊕O(−n)|n ≥ 0} on P1 and there is no family over a scheme of finite type gluing all of them. So here
MDol and MdR actually parameterize (semi-)stable bundles.

Via Stacks Although [5] deals with Higgs bundles, similar arguments hold as well for vector bundles
with a flat connection. Suppose X is a smooth projective curve over C. Then the stack parametrizes pairs
(E,∇) where E is a vector bundle of rank r and degree d. ∇ can be a flat connection or a Higgs field i.e.
∇ : E → E ⊗ Ω1

X with ∇ ∧ ∇ = 0. A morphism of pairs makes them form a pullback. Then this can be
an algebraic stack [5, Thm. 7.18]. And the semi-stability will be an open condition. We can therefore obtain
an open substack of semi-stable bundles whose map to the coarse moduli scheme talked above is initial
among all morphisms to schemes.
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In Gauge Theory The moduli space of G-local systems up to gauge equivalence is considered in mathe-
matical physics. On a smooth manifold X a G-local system can be viewed as a principal G-bundle with a
flat connection (to induce the parallel transport). Then this moduli space will be

MG(X) ∼=
Hom(π1(X,x), G)

G

consisting of group homomorphims π1(X,x) → G up to conjugation. And this set can be equipped with
a manifold structure but not necessarily smooth. Moreover if X is a compact orientable surface and the
corresponding Lie algebra of G satisfies some more conditions, then the moduli space MG(X) will be a
symplectic reduction. In this specific example we can think about more structures like symplectic structure
or Poisson structure on it and this idea is already generalized in derived algebraic (symplectic) geometry.

The above construction can also be applied to obtain the Betti moduli space MB. In [16] Simpson deals
with the case where G = GLn. We suppose the topological space X is good enough e.g. the complex
analytic space of a smooth projective variety over C and fix a point x ∈ X . Let Γ = π1(X,x) which is
finitely generated. Then we can define a functor from SchC to Set sending any scheme S to the set of group
homomorphisms Hom(Γ, GL(n,OS(S))). This functor is represented by an affine scheme R(Γ, n) which
can be constructed by relations in Γ as a closed subscheme in the product of the general linear algebraic
group GLn. In this sense R(Γ, n) = Hom(Γ, GLn). Considering the conjugate action of GLn on R(Γ, n), we
get the (coarse) Betti moduli space MB(X,n) via GIT. (see [16, Prop. 6.1])

This construction can be generalized for any reductive affine algebraic group G. And we have the
(coarse) Betti moduli space MG(X) whose C-points are in one-to-one correspondence with isomorphism
classes of semi-simple locally constant principal G-bundles.

From the stacky viewpoint we can also get a quotient stack MG(X) := [RG(Γ)/G] whose map to
MG(X) is initial among morphisms to schemes.

2.2 Derived Betti Moduli Stack

We introduce the derived Betti moduli stack of G-local systems. In the following we suppose k is a field of
characteristic 0 e.g. C and X is a good enough topological space e.g. a connected complex manifold. There
are some ways to describe this derived moduli stack. We deal with the case G = GLn first.

At the beginning we take a moduli theory viewpoint to see which geometric objects it really classifies.
Here we extend complex vector spaces or vector bundles to be differential graded modules (dg-modules).
Again we assume X is good enough and A is a cdga over k. A-Mod≤0

X denotes the category of presheaves
of dg-A-modules on X . It’s equipped with a global projective model structure and is a dg-category. Apply left
Bousfield localization to this model category we can get a new model category where weak equivalences are
local weak equivalences such that they induce quai-isomorphisms of dg-A-modules on stalks.

Definition 2.2.1. We say a presheaf F of dg-A-modules on X is locally on X ×Aét equivalent to An if for any
point x ∈ X there exists an open neighborhood U of x and an étale covering {SpecBi → SpecA|i ∈ I} for
the affine derived stack SpecA such that F|U ⊗A Bi is weakly equivalent to Bn as presheaves.

Then the category LocSysn(X;A) of local systems of dg-A-modules of rank n consists of cofibrant ob-
jects locally on X ×Aét equivalent to An and morphisms local weak equivalences. Note that we can regard
this category as a simplicial set by applying the dg-nerve functor (in [11, Construction 1.3.1.6]). Then we get
a derived prestack RLocSysn(X) sending any cdga A to the simplicial set Ndg(LocSysn(X;A)). It’s shown
in [20, Prop. 2.2.6.5] this derived prestack is a derived stack.

There is also another way to describe this derived stack. We have already known a local system or a
locally constant sheaf of sets is equivalent to a functor from Π1(X) to Set. Therefore a natual viewpoint
tells us the higher moduli space of local systems should parametrize ∞-local systems and be a mapping
space from Π∞(X) to some infinite category. For complex local systems Set is replaced by complex vector
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spaces. Therefore here we consider the derived moduli stack RBunn of vector bundles of rank n and the
derived stack of local systems of rank n is then defined as

RMapdStk(Π∞(X),RBunn)

the mapping stack in the category dStkk = dAff∼
ét of derived stacks where Π∞(X) is the constant derived

stack associated to the singular Kan complex Sing•(X). Also note that a classical theorem tells us a vector
bundle of rank n is actually equivalent to a GLn-torsor. Therefore RBunn is equivalent to the classifying
derived stack BGLn. This version can be adapted to any other suitable group G and we can define the
derived moduli stack of G-local systems as RMapdStk(Π∞(X), BG).

Theorem 2.2.2. 11 RLocSysn(X) is equivalent to RMapdStk(Π∞(X),RBunn).

Question 5. Whether there is a good homotopy theory for geometric objects like general (derived) schemes
such that a local system can be identified with a functor on this homotopy type? So that we can define
the Betti moduli stack for (derived) schemes as the derived mapping stack on homotopy types. And also
we can study its relations to the de Rham moduli stack which is defined to be RMapdStk(XdR, BG) for
any prestack X . Note that for a smooth projective variety X over C, the two stacks are equivalent on the
truncation by Riemann-Hilbert correspondence which is a result of our characterizations before.

The final approach to getting the derived moduli stack of local systems is similar to the method we
discussed before to obtain the quotient stack MG(X) := [RG(Γ)/G] where Γ = π1(X,x). In the theory
of simplicial sets there is a Quillen pair between simplicial sets and simplicial groups 12. The loop group
construction sends every simplicial set to a weakly equivalent simplicial group. Then for our space X , it can
be associated with a simplicial group GX whose geometric realization is weakly homotopy equivalent to X
i.e. having the same homotopy type. If it’s necessary, we can resolve GX further to obtain a simplicial group
Γ• such that every Γn is finitely free. In this case RG(Γ•) will be a cosimplicial affine scheme which is actually
an affine derived stack. Actually if we use the model of cdga, we need to apply the normalization functor
to the simplicial commutative algebra structure on RG(Γ•) to obtain a cdga AG(X). Then RLocSysG(X) is
defined as the derived quotient stack [SpecAG(X)/G] (see [20, Sec. 1.3.4]).

Remark 2.2.3. To see [SpecAG(X)/G] is equivalent to RMapdStk(Π∞(X), BG) we follow [3, Prop. 4.5.4].
Choose a point pt → X and this induces a map

RMapdStk(Π∞(X), BG) → RMapdStk(pt, BG) ≃ BG

Consider the following fiber product

X pt

RMapdStk(Π∞(X), BG) BG

⌟

where X = RMapdStk(Π∞(X), BG)×BGpt. Since BG is the derived stack classifying principal G-bundles,
the map X → RMapdStk(Π∞(X), BG) will be a G-fibration with a G-action and RMapdStk(Π∞(X), BG)
is then a quotient of X . So we only need to see X is affine which suffices to prove the truncation t0X is a
classical affine scheme.

To see this, for any classical affine scheme S we have

Map(S, t0X ) ≃ Map(S, t0RMapdStk(Π∞(X), BG))×Map(S,BG) Map(S, pt)

≃ Map(S,MapStk(Π∞(X), BG))×BG(S) pt

≃ Map(S ×Π∞(X), BG)×BG(S) pt

≃ Map(Π∞(X),Map(S,BG))×BG(S) pt

≃ Map(Π∞(X), BG(S))×BG(S) pt

11 [20, Prop. 2.2.6.5]
12See e.g. [9, Theorem 7.8]
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Since pt → Π∞(X) is a cofibration and BG(S) is a Kan complex, Map(Π∞(X), BG(S)) → BG(S) is then a
Kan fibration. Moreover since sSet is proper, the homotopy fiber product above is an actual fiber product
which will be the fiber consisting of elements satisfying the group law i.e. group homomorphisms from
π1(X,pt) to G(S).

To see this precisely, we can replace Π∞(X) by its fundamental groupoid Π≤1(X) since BG(S) is 1-
truncated, which implies Map(Π∞(X), BG(S)) will also be 1-truncated. And from connected properties of
X , Π≤1(X) is equivalent to B(π1(X,pt)).

Therefore t0X is equivalent to RG(Γ) where Γ = π1(X,pt) as we talked before in the classical case
which is an affine scheme.

Question 6. Is there any description in the moduli theory sense that the de Rham stack classifies something
like flat superconnections, just similar to the Betti case? And how can we develop a derived moduli theory
for Higgs bundles on the Dolbeault side such that there is a good (derived) non-abelian Hodge theory in it?
These should be the generalization of Simpson’s work.

2.3 Derived Symplectic Geometry

The symplectic structure on the stack of local systems can also be generalized to this derived case which
covers the classical case when X is a compact orientable surface.

2.3.1 Cotangent Complex

Affine Case The concept of cotangent complex is a derived generalization of Ω1
X for a geometric object X ,

e.g. a scheme. We know in the classical case, for a k-affine scheme Spec A, Ω1
A/k corepresents the functor

Derk(A,−) of k-derivations on ModA. In fact, for an A-module if we define A[M ] = A⊕M to be its trivial
extension i.e. (a,m) · (b, n) = (ab, an+ bm), then we will have

HomA(Ω
1
A/k,M) ∼= Derk(A,M) ∼= HomAlgk/A

(A,A[M ])

It’s similar for a cdga A that LA corepresents the the mapping space functor of k-derivations.
Actually we have a Quillen pair

Ω1
−/k ⊗− A : cdgA≤0

k /A dgMod≤0
A : A[−]

Passing to homotopy theories or ∞-categories, the cotangent complex LA for a cdga A is defined as

LA := L(Ω1
−/k ⊗− A)(A) = Ω1

QA/k ×QA A

where QA is a cofibrant replacement of A. It satisfies

Map
dgMod

≤0
A
(LA,M) ≃ Derk(A,M) := Map

cdgA
≤0
A
(A,A[M ])

In this sense LA corepresents Derk(A,−) : dgMod≤0
A → sSet the mapping space functor of k-derivations

and it can be identified with a homotopy fiber i.e.

Derk(A,M) ≃ fib
(
Map

cdgA
≤0
k
(A,A[M ])

pr∗−−→ Map
cdgA

≤0
k
(A,A); idA

)
Remark 2.3.1. Given a map f : A → B in cdgA≤0

k , we have a Quillen pair

f∗ := −⊗A B : dgMod≤0
A dgMod≤0

B : f∗

and moreover if f is a quasi-isomorphism, then this will induce an equivalence on the homotopy level.
Since f∗ creates weak equivalence i.e. a morphism g ∈ dgMod≤0

B is a weak equivalence if and only if f∗(g)
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is a weak equivalence, we only need to prove for any cofibrant object M in dgMod≤0
A the adjunction unit

M → M ⊗A B is a weak equivalence.13 By the functorial cofibrant replacement construction in the small
object argument, we may just suppose M is quasi-free i.e. of the form ⊕i∈IA[ni] for some integers ni. Then
we have an isomorphism

TorH
∗A

0 (H∗(M), H∗(B))
∼−→ H∗(M ⊗A B)

and moreover since H∗A ∼= H∗B, the left side above is actually H∗(M). Therefore this proves when QA

is a cofibrant replacement of A in cdgA≤0
k and f : QA → A is a weak equivalence, we have a Quillen

equivalence (f∗, f∗), from which we can identify Ω1
QA/k with LA.

In this afiine case, we see LA lies in the interval (−∞, 0]. For a general scheme X , LX is glued by its
affine pieces, and L. Avramov has proved a scheme locally of finite type over k either has a perfect cotangent
complex with amplitude ⊆ [−1, 0] which means it’s quasi-smooth, or has an unbounded cotangent complex.

Vanishing Properties For an affine scheme Spec A, its cotangent complex LA contains some information
of smoothness.

Theorem 2.3.2. Suppose A is of finite type over k. Then

1. A is étale iff LA ≃ 0;

2. A is smooth iff LA ≃ Ω1
A/k and Ω1

A/k if finite projective over A. The latter means LA is perfect centered at
degree 0.

General Case

Definition 2.3.3. Let X be a derived prestack or a derived stack. The category of quasi-coherent sheaves
(complexes) on it is defined to be QCoh(X ) := lim

S→X , S∈dAffk

QCoh(S) where if S = Spec A ∈ dAffk,

QCoh(S) := dgModA.

Let x be an A-point of X i.e. x : S = Spec A → X . We have a functor of k-derivations at x

DerX ,x : dgMod≤0
A → sSet, M 7→ MapS/PreStk(Spec A[M ],X )

Definition 2.3.4. We say X has a cotangent complex at x if DerX ,x is corepresented by LX ,x ∈ QCoh(S)
when restricted to QCoh(S)≤0. And LX ,x is called the cotangent complex of X at x.

X has a global cotangent complex if there exists some LX ∈ QCoh(X ) satisfying x∗LX ≃ LX ,x and
cocycle conditions.

The tangent complex TX ,x of X at x is the dual of LX ,x i.e. TX ,x := RHomQCoh(S)(LX ,x,OS) and a
global tangent complex TX ∈ QCoh(X ) satisfies x∗TX ≃ TX ,x and cocycle conditions. If LX is perfect,
TX will be the dual of LX , i.e. TX ≃ RHomQCoh(X )(LX ,OX ).

Then a generalization of L. Avramov’s theorem is as follows.

Theorem 2.3.5. 14 If X is an n-Artin derived stack admitting a global cotangent complex LX , then LX ∈
QCoh(X )≤n i.e. LX ,x ∈ QCoh(S)≤n for any A-point x : S = Spec A → X . Moreover if X is locally of
finite presentation, then X is smooth iff LX is perfect and lies in QCoh(X )≥0, ≤n.

Therefore for an Artin derived stack X , the negative degrees of LX are referred to as its derived degrees
and its positive ones as its stacky dergrees.

13It’s Proposition 2.3 in the nLab page of Quillen equivalence.
14 [20, Prop. 1.4.1.10 and Cor. 2.2.5.3]
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2.3.2 (Co)tangent Complexes for BunG and LocSysG

Suppose G is an algebraic group over k and X is a smooth projective variety of dimension d. Then the
(derived) moduli stack for principal G-bundles on X is defined as

BunG := BunG(X) = RMapdStk(X,BG)

and the (derived de Rham) moduli stack for G-local systems (flat connections) on X is defined as

LocSysG := LocSysG(X) = RMapdStk(XdR, BG)

We compute their cotangent complexes here, which needs the following theorem to compute the cotangent
complex of a mapping stack and we will prove this theorem later.

Theorem 2.3.6. 15 Let X be a derived Artin stack locally of finite presentation and X be a smooth projective variety of
dimension d. Suppose S = Spec A is an affine derived scheme. An element f̃ ∈ RMapStk(X,X )(S) is equivalent
to a morphism f : XA → X where XA := X × S = X × Spec A. Then we have

f̃∗TRMapStk(X,X ) ≃ Γ(XA, f
∗TX ) = RHomQCoh(XA)(OXA

, f∗TX )

In particular by Serre duality we also have

f̃∗LRMapStk(X,X ) ≃ Γ(XA, f
∗TX )∨ ≃ Γ(XA, f

∗LX ⊗OXA
ωXA

)

where ωXA
= p!(k) is the dualizing sheaf on XA and p : XA → pt. If A = k, we will have ωXA

= ω[d] where ω is
the canonical bundle of X .

From the theorem above to compute cotangent complexes for BunG and LocSysG, we need to compute
that for BG first.

Cotangent Complex for BG

Proposition 2.3.7. QCoh(BG) ≃ Rep(G)

Proof. Let σ : pt → BG corresponds to the trivial principal bundle G → pt. Then we have a pullback
diagram

G pt

pt BG

⌟
σ

σ

Since char k = 0, the algebraic group G is smooth (see e.g. Lemma 047N in Stacks Project). Then σ :
pt → BG is a smooth atlas. And note that QCoh(−) can be glued by smooth morphisms, elements in
QCoh(BG) will be equivalent to elements in QCoh(pt) = Vect16 together with isomorphisms over G
satisfying some certain cocycle conditions which are actually G-equivariant sheaves and they are equivalent
to G-representations.

Here we can see the induced map QCoh(BG) → Vect is a forgetful functor.

For the algebraic group G, its associated Lie algebra g is the tangent space at its identity element e : pt →
G. Note that since G is smooth, LG ≃ Ω1

G/k which implies e∗LG = g∨ and implies LG ≃ g∨ ⊗OG.

15See e.g. [20, Thm. 2.2.6.11 and Cor. 2.2.6.14]. X can be replaced by any (derived) stack.
16It’s the category of complexes of k-vector spaces
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Consider the pullback diagram

G pt

pt BG

f

⌟
σ

σ

and we see f∗Lpt/BG ≃ LG/pt = LG = g∨ ⊗OG. Next from f ◦ e = id,

pt e∗f∗Lpt/BG

G f∗Lpt/BG = g∨ ⊗OG

pt Lpt/BG

e

id

f

we have Lpt/BG = e∗f∗Lpt/BG = f∗Lpt/BG ⊗OG
k = g∨ ⊗k Ok ⊗OG

k = g∨

The map σ induces a fiber sequence or a distinguished triangle

σ∗LBG → Lpt = 0 → Lpt/BG

which implies Lpt/BG = σ∗LBG[1]. Hence LBG = g∨[−1] and TBG = g[1].

Then by Theorem 2.3.6, for a map g̃ : pt → BunG and f̃ : pt → LocSysG, we’ll have

g̃∗TBunG
= Γ(X, g∗TBG) = Γ(X, g∗g[1]))

f̃∗TLocSysG = Γ(XdR, f
∗g[1]) = ΓdR(X, f∗g[1]) = RHomQCoh(XdR)(OXdR

, f∗g[1])

where ΓdR means this computes the de Rham cohomology.

De Rham Cohomology We explain why ΓdR computes the de Rham cohomology.
Let FdR ∈ Cry(X) := QCoh(XdR) and it’s equivalent to F ∈ DMod(X). And from [8, 6.5.1] the de

Rham cohomology of F is defined to be

ΓdR(X,F) := RHomQCoh(XdR)(OXdR
,F) ≃ RHomDMod(X)(OX ,F)

In [10, Lem. 1.5.27], there are resolutions for left DX -module OX and right DX -module ωX

0 → DX ⊗OX

d∧
TX → · · · → DX ⊗OX

0∧
TX → OX → 0

0 → Ω0
X ⊗OX

DX → · · · → Ωd
X ⊗OX

DX → ωX → 0

where TX = (Ω1
X)∨ and ωX = Ωdim X

X . Then we have

RHomDMod(X)(OX , DX) ≃
(
HomDX

(DX ⊗OX

0∧
TX , DX) → · · · → · · · → HomDX

(DX ⊗OX

d∧
TX , DX)

)
≃

(
HomOX

(

0∧
TX , DX) → · · · → HomOX

(

d∧
TX , DX)

)
, by adjointness

≃
(
Ω0

X ⊗OX
DX → · · · → Ωd

X ⊗OX
DX

)
, since Ωn

X and
n∧
TX are locally free

≃ ωX [−d]
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This gives RHomDMod(X)(OX ,F) ≃ RHomDMod(X)(OX , DX)⊗DX
F ≃ ωX ⊗DX

F [−d].
If F is a usual locally free sheaf i.e. F ∈ DMod(X)♡, it will be the usual de Rham complex with

coefficients in F
0 → Ω0

X ⊗OX
F → · · · → Ωd

X ⊗OX
F → 0

Then RHomDMod(X)(OX ,F) is obtained by applying the derived global section functor RΓ(X,−) to the
complex of sheaves above, whose cohomology is the hypercohomology of this complex and it is just the
algebraic de Rham cohomology. To compute it we can choose an injective resolution for every Ωi

X ⊗OX
F and

get a double complex, the total complex of which computes the de Rham chomology. Note that in this case
if X is a smooth projective variety of dimension d, every quasi-coherent sheaf has trivial cohomology for
n > d and then vertical lines will have length d, so the de Rham cohomology has top degree 2d.

Hidden Smoothness Principle Still from Theorem 2.3.6, we see

g̃∗LBunG
= Γ(X, g∗g[1])∨ ≃ Γ(X, g∗g∨ ⊗ ωX)[d− 1]

Then it’s clear if X is a smooth projective curve i.e. dim X = d = 1, then BunX is a smooth 1-Artin stack
and for a higher dimensional variety X of dimension d, LBunG

will then lie in [1 − d, 1] and it will not be
smooth when d ≥ 2.

Hidden smoothness principle says the moduli space of a reasonable moduli problem should be smooth
and if it’s not smooth, then there should exist a new “smooth” moduli space such that the original space is
the truncation of it. In general the new moduli space is a derived stack. But here we can see even if BunG
exists as a derived stack, it’s still not smooth when d ≥ 2. Actually the smoothness for a derived stack we
considered is strong smoothness (see e.g [20, Def. 2.2.2.3]). In fact, a more reasonable smoothness in the sense
of hidden smoothness principle should be “homotopical smoothness” which means the cotangent complex is
prefect of finite Tor-amplitude and it’s satisfied in the case BunG for higher dimensional variety X .

As for LocSysG, we have

f̃∗LLocSysG = ΓdR(X, f∗g[1])∨ ≃ ΓdR(X, f∗g∨[−1]⊗OX [2d]) = ΓdR(X, f∗g∨)[2d− 1]

Even for a smooth curve X , we see LocSysG is not smooth, but it’s quasi-smooth which plays an important
role on the definition of singular support in [2].

To see in this case the dualizing complex on de Rham prestack XdR i.e. in DMod(X) is OX [2d], we
need to know for a smooth projective variety p : X → Spec k of dimension d, p!(k) = kX [2d]17 in the derived
category D(kX) which by Riemann-Hilbert correspondence is equivalent to OX ⊗kX

kX [2d] = OX [2d] in
DMod(X).

Next we start to prove Theorem 2.3.6.

Proof of Theorem 2.3.6. For a derived (pre)stack X , its n-th tangent stack for n ≥ 0 is defined to be

TnX := RMapdStk(Spec k[ϵn],X )

where k[ϵn] = k⊕ k centered at degrees −n and 0 with zero differential. Given a map u : S = Spec A → X ,
TnX is characterized by the following equations

MapPreStk/X (S, TnX ) ≃ MapPreStk/X (S,RMapdStk(Spec k[ϵn],X ))

≃ MapS/PreStk(S × Spec k[ϵn],X )

≃ MapS/PreStk(SOS [n],X )

≃ MapQCoh(S)(u
∗LX ,OS [n])

17See e.g. [1, Cor. 2.2.10].
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But

MapQCoh(S)(OS [−n], u∗TX ) ≃ MapQCoh(S)

(
OS [−n],RHomQCoh(S)(u

∗LX ,OS)
)

≃ MapQCoh(S)(u
∗LX ,OS [n])

So we get

MapPreStk/X (S, TnX ) ≃ MapQCoh(S)(u
∗LX ,OS [n]) ≃ MapQCoh(S)(OS [−n], u∗TX )

The n-th tangent stack construction commutes with the mapping stack construction i.e.

TnRMapdStk(X,X ) = RMapdStk

(
Spec k[ϵn],RMapdStk(X,X )

)
≃ RMapdStk(X,TnX )

Hence for f̃ : S → RMapdStk(X,X ) which corresponds to f : S ×X → X , we have

MapPreStk/RMapdStk(X,X )

(
S, TnRMapdStk(X,X )

)
≃ MapRMapdStk(X,X )

(
S,RMapdStk(X,TnX )

)
≃ MapPreStk/X (S ×X,TnX )

≃ MapQCoh(S×X)(OS×X [−n], f∗TX )

≃ MapQCoh(S)(OS [−n], f̃∗TRMapdStk(X,X ))

But

MapQCoh(S)

(
OS [−n],RHomQCoh(S×X)(OS×X , f∗TX )

)
≃ τ≤nRHomQCoh(S)

(
OS ,RHomQCoh(S×X)(OS×X , f∗TX )

)
[n]

≃ τ≤nRHomQCoh(S×X)(OS ⊗OS
OS×X , f∗TX )[n]

= τ≤nRHomQCoh(S×X)(OS×X , f∗TX )[n]

≃MapQCoh(S×X)(OS×X [−n], f∗TX )

≃MapQCoh(S)(OS [−n], f̃∗TRMapdStk(X,X ))

Since n ≥ 0 is arbitrary, we conclude RHomQCoh(S×X)(OS×X , f∗TX ) ≃ f̃∗TRMapdStk(X,X ).

2.3.3 Shifted Symplectic Structures

Affine Case For a cdga A, its differential forms Ω1
A/k of degree 1 is a differential graded A-module with

the derivation ddR : A → Ω1
A/k. In this case the de Rham complex

Ω•
A := A

ddR−−→ Ω1
A/k

ddR−−→ Ω2
A/k → · · ·

where Ωn
A/k =

∧n
A Ω1

A/k is actually the following double complex

A0 Ω1,0
A/k Ω2,0

A/k · · ·

A−1 Ω1,−1
A/k Ω2,−1

A/k · · ·

A−2 Ω1,−2
A/k Ω2,−2

A/k · · ·

...
...

...

ddR ddR

d

ddR

d

ddR

d

d

ddR

d

ddR

d

16



Here we also write Ω0
A/k for the cdga A. Note that there is a sign trick. We know ddR is a map of dg-modules

and to get the total complex Tot
∏
Ω•

A i.e.

(Tot
∏
Ω•

A)
n :=

∏
p+q=n

Ωp,q
A/k

the differential on Ωp,q
A/k should actually be ddR + (−1)pd.

For a complex or a double complex, there is a filtration defined as follows

F p(· · · → V n → V n+1 → · · · ) = · · · → 0 → V p → V p+1 → · · ·

Here for algebraic de Rham complex, such filtration is called Hodge filtration. Classically for a smooth alge-
braic variety X over k especially over C, the sheaf ZpΩ•

X will be quasi-isomorphic to (F pΩ•
X)[p] in the sense

of hypercohomology, which means the sheaf cohomology of ZpΩ•
X will be isomorphic to the hypercohomol-

ogy of algebraic Hodge filtration (F pΩ•
X)[p].

From Remark 2.3.1 we can identify LA with Ω1
QA, so here we use the latter to define shifted symplectic

structures.

Definition 2.3.8 (closed p-forms). For a cdga A or an affine derived scheme SpecA, the complex of closed
p-forms is defined to be Ap,cl(A) := (Tot

∏
F pΩ•

QA)[p].
The shifted version for Spec A is defined as follows

• the complex of n-shifted p-forms is Ap(A,n) := Ωp
QA[n]

• the complex of n-shifted closed p-forms is Ap,cl(A,n) := (Tot
∏
F pΩ•

QA)[p+ n]

An n-shifted closed p-form ω on SpecA is an element in Z0Ap,cl(A,n) and more precisely ω = (ωi)i≥0 where
ωi ∈ Ωp+i,n−i

QA satisfies ddrωi + dωi+1 = 0 and dω0 = 0.

Classically a symplectic structure ω on a smooth scheme X over k is a closed algebraic 2-form in Ω2
X/k(X)

such that the induced map θω : TX → Ω1
X/k is a sheaf isomorphism. We know for a k-algebra R, Ωn

R =∧n
Ω1

R/k consists of all alternating functions
∏n

i=1 TR → R. Then for Ω2
R any element in it will define an

alternating map TR ×TR → R and especially it induces TR → Ω1
R/k = T∨

R . This explains how θω works. We
can generalize this definition to the derived case.

Definition 2.3.9. An n-shifted symplectic structure on A is a non-degenerate n-shifted closed 2-form ω ∈
A2,cl(A, 2) on A such that the underlying 2-form ω0 induces an equivalence

θω : TA LA[n]
∼

General Case In the above we have defined the complex of n-shifted (closed) p-forms i.e. Ap(A,n) and
Ap,cl(A,n) for an affine derived scheme Spec A. By Dold-Kan correspondence, they can be translated to be
a simplicial set and we will get prestacks

Ap(−, n), Ap,cl(−, n) : dAffop
k −→ sSet

From [14, Prop. 1.11] the two prestacks are actually derived stacks with respect to étale topology.

Definition 2.3.10. For a general derived stack X ,

• the space of n-shifted p-forms is Ap(X , n) := Map
(
X ,Ap(−, n)

)
• the space of n-shifted closed p-forms is Ap,cl(X , n) := Map

(
X ,Ap,cl(−, n)

)
17



Then an n-shifted symplectic structure on X will be an element ω ∈ π0Ap,cl(X , n) such that its underlying
2-form in Ap(X , n) is non-degenerate i.e. induces an equivalence

θω : TX LX [n]
∼

in QCoh(X ).

Graded Mixed Complexes There is another approach using the theory of graded mixed complexes to de-
scribe n-shifted p-forms.

Definition 2.3.11. A graded mixed complexes over k consists of a Z-families of complexes of k-vector spaces
{E(p)}p∈Z equipped with chain maps ϵp : E(p) → E(p+ 1)[1] for every p ∈ Z

· · · E(p)n E(p)n+1 · · ·

· · · E(p+ 1)n E(p+ 1)n+1 · · ·

ϵp ϵp ϵp

satisfying ϵ ◦ ϵ = 0 and note that there is a sign trick in E(p+ 1)[1] for its differential.
A map f : {E(p), ϵp}p∈Z → {F(p), δp}p∈Z graded mixed complexes consists a Z-families chain maps

fp : E(p) → F (p) such that the following diagram commutes

E(p) F (p)

E(p+ 1)[1] F (p+ 1)[1]

fp

ϵP δp

fp+1

For two graded mixed complexes {E(p), ϵp}p∈Z and {F (p), δp}p∈Z , their tensor product is

(E ⊗ F )(p) =
⊕

i+j=p

E(i)⊗ F (j)

This defines a symmetric monoidal model category ϵ-dgModk whose weak equivalences and cofibrations are
defined weight-wise.

Commutative monoid like objects in ϵ-dgModk form a model category (or ∞-category) again, say
ϵ-cdgAgr

k := Comm(ϵ-dgModk) whose weak equivalences and fibrations inherit from the forgetful functor
to ϵ-dgModk. Objects {E(p).ϵp}p∈Z in ϵ-cdgAgr

k are called grade mixed cdga’s and it’s equipped with multi-
plication maps E(p) ⊗ E(q) → E(p + q) compatible with the graded mixed structure ϵ. This implies E(0)
will be a cdga.

Since our affine derived schemes are dual to cdgA≤0
k , in the following we only consider ϵ-cdgAgr, ≤0

k

which consists of graded mixed cdga’s such that E(0) is a non-positively graded cdga i.e. in cdgA≤0
k . From

our descriptions above we get a functor

ϵ-cdgAgr, ≤0
k −→ cdgA≤0

k , {E(p), ϵp}p∈Z 7→ E(0)

This functor admits a left adjoint functor

DR : cdgA≤0
k → ϵ-cdgAgr, ≤0

k , A 7→ DR(A) ≃ SymA(LA[−1]) with ϵ0 = ddR

where SymA refers to the underived symmetric product of A-dg-modules. Actually on the underlying usual
categories we can define a functor DR sending any cdga A to SymA(Ω

1
A[−1]). Then we will have

Hom
(
SymA(Ω

1
A[−1]), {E(p)}p∈Z

)
= Hom(A,E(0))

18



due to the following diagram

A Ω1
A

E(0) E(1)[1]

ddR

∃!

Then DR ⊣ (−)(0) forms a Quillen pair and DR is defined to be the left derived funcotor of DR. With the
identification between LA and Ω1

QA, we see DR(A) ≃ SymA(LA[−1]) and it’s called the de Rham algebra of
A.

And for a prestack X its de Rham algebra will be

DR(X ) := lim
Spec A→X

DR(A)

Moreover if X is a derived Artin stack, then DR(X ) ≃ Γ(X ,Sym(LX [−1])).

Definition 2.3.12. For a cdga A, the space of n-shifted closed p-forms is

Ap,cl(A,n) := Mapϵ-dgModk

(
k(p)[−p− n],DR(A)

)
where k(p)[−p−n] is the graded mixed complexes sitting in the weight degree p and the cohomological

degree p+ n. And for a derived Artin stack X , its space of n-shifted closed p-forms will then be

Ap,cl(X , n) = lim
Spec A→X

Ap,cl(A,n) ≃ Mapϵ-dgModk

(
k(p)[−p− n],DR(X )

)
On BunG and LocSysG One of the main theorems in [14] (Thm. 2.5) says

Theorem 2.3.13. Let X be a derived Artin stack with an n-shifted symplectic structure ω. If X is an O-compact
derived stack with a d-orientation Γ(X,OX) → k[−d] such that RMapdStk(X,X ) is a derived Artin stack locally
of finite presentation, then RMapdStk(X,X ) will admit a canonical (n− d)-shifted symplectic structure.

So we try to find shifted symplectic structures on BG first. We have already known LBG = g∨[−1] and
TBG = g[1]. Therefore the only possible n for TBG ≃ LBG[n] is n = 2.

If G is a reductive group, we will have

DR(BG) = SymGLBG[−1] = SymGg
∨[−2] = {Symp

k(g
∨)G[−2p], 0}p≥0

Actually the double complex for ddR : OBG → LBG looks like

0 0 Sym3
k(g

∨)G

0 Sym2
k(g

∨)G 0

Sym1
k(g

∨)G 0 0

0 0 0

LBG ∧2LBG ∧3LBG
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And this implies Ap(BG,n) = Symp
k(g

∨)G[n− p] and

degree= p− n degree= p− n+ 2

Ap,cl(BG,n) =
(
0 Symp

k(g
∨)G 0 Symp+1

k (g∨)G · · ·
)

This means Ap,cl(BG,n) =
⊕
i≥0

Symp+i
k (g∨)G[n−p−2i]. And it will be clear π0A2,cl(BG, 2) ≃ Sym2

k(g
∨)G. So

a symplectic structure on BG is equivalent to a non-degenerate G-invariant quadratic form on g which can
induce an isomorphism between g and g∨. Since our G here is reductive, when we embed G into some GLn

as a closed subgroup scheme and get a faithful G-representation on kn, the invariant symmetric bilinear
form obtained from it will be non-degenerate.

Next to use Theorem 2.3.13, we need to find an O-orientation for X and XdR for a smooth projective
variety X of dimension d. For BunG, if X is Calabi-Yau which means ωX ≃ OX , then use the trace map tr
we get a d-orientation

Hd(X,O) Hd(X,ω) k
∼ tr

So in this case if X is Calabi-Yau BunG will admit a (2− d)-shifted symplectic structure.
As for XdR, we have already known Γ(XdR,O) computes the de Rham cohomology of X , and then a

fundamental class in H2d
dR(X,O) will give a 2d-orientation which implies LocSysG admits a (2− 2d)-shifted

symplectic structure. Actually since we have computed

f̃∗LLocSysG ≃ ΓdR(X, f∗g∨)[2d− 1], and f̃∗TLocSysG ≃ ΓdR(X, f∗g)[1]

the only possible shifted degree n for TLocSys ≃ LLocSys[n] is n = 2 − 2d. And we can find it similar to the
case of BG.

20



References

[1] Pramod N. Achar. Perverse Sheaves and Applications to Representation Theory, volume 258. American
Mathematical Soc., 2021.

[2] Dima Arinkin and Dennis Gaitsgory. Singular support of coherent sheaves and the geometric lang-
lands conjecture, arXiv:1201.6343. 2014.

[3] Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Sam Raskin, Nick Rozenblyum, and Yasha Var-
shavsky. The stack of local systems with restricted variation and geometric langlands theory with
nilpotent singular support, arXiv:2010.01906. 2022.

[4] Jonathan Block and Aaron M Smith. A Riemann–Hilbert correspondence for infinity local systems,
arXiv:0908.2843. 2012.

[5] Sebastian Casalaina-Martin and Jonathan Wise. An introduction to moduli stacks, with a view towards
Higgs bundles on algebraic curves, arXiv:1708.08124. 2017.

[6] Joseph Chuang, Julian Holstein, and Andrey Lazarev. Maurer–Cartan moduli and theorems of
Riemann–Hilbert type, arXiv:1802.02549. 2021.

[7] Brian Conrad. Classical Motivation for the Riemann-Hilbert Correspondence.

[8] Dennis Gaitsgory and Nick Rozenblyum. Crystals and D-modules, arXiv:1111.2087. 2014.

[9] Paul G. Goerss and John F. Jardine. Simplicial Homotopy Theory. Springer Science & Business Media,
2009.

[10] Ryoshi Hotta and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory, volume 236.
Springer Science & Business Media, 2008.

[11] Jacob Lurie. Higher Algebra. in the author’s homepage.

[12] Jacob Lurie. Notes on Crystals and Algebraic D-modules.

[13] Jacob Lurie. Youtube Videos on ‘A Riemann-Hilbert Correspondence in p-adic Geometry’ Part 1 in
MPIM.
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[17] Carlos T Simpson. Moduli of representations of the fundamental group of a smooth projective variety
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