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Words are the boundary of thoughts.

Abstract

This Bachelor’s thesis consists of three parts. In the first part we give a concise introduction to Toën and
Vezzosi’s work on homotopical algebraic geometry, a particular example of which is the derived algebraic
geometry. Our main objects to study in this part are simplicial presheaves and we will show higher stacks
are simplicial presheaves satisfying the descent for hypercovers. From this we can also obtain the concept
of derived stacks. In the second part we focus on derived critical loci which is actually a derived inter-
section. We will show this construction is dual to BV-formalization in mathematical physics and serves a
model for −1-shifted symplectic structure. Finally there is an appendix about homotopical algebra neces-
sary for reading this thesis especially the first part. In this appendix we will talk about abstract homotopy
theory in detail especially homotopy (co)limits and simplicial model categories.
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1 Introduction

In this introduction we first talk about some historical information or motivation for higher categories and
higher stacks. After that we focus on what this thesis is about.

1.1 Towards Higher World

In mathematics the process that a concept is put forward by a mathematician is just like a pregnant woman
gives birth to a child. Sometimes the birth goes well but sometimes you may need help from others or even
worse a C-section is necessary. Moreover with time going, children will look really different from before.
It’s also true in mathematics that not all concepts are clear at the outset and with the further development
for some concepts you can not even know their original appearance. However, it’s fortunate that as long as
you can conceive of a concept, no matter how vague it may be, we can express it clearly, even though this
process of clarifying it may be long and painful. It’s just the philosophy of early Wittgenstein. Most people
know his famous proposition “What we cannot speak about we must pass over in silence” [74, 7] but I think
another one is more important “Everything that can be thought at all can be thought clearly. Everything
that can be put in words can be put clearly.” [74, 4.116] As a corollary we can say words are the boundary
of thoughts. The historical development of higher categories and higher stacks has proven this point. In
the early history higher objects are like ghosts that we are aware of their existence but their true figure is so
vague that we cannot look at them directly. But now we have had good theories to describe them.

There are many motivations for higher categories and higher stacks but here we begin with the problem
of non-abelian cohomology which is also my first encounter with the higher world during my undergraduate
study. Our main references here are [10], [38] and [61].

1.1.1 Non-abelian Cohomology

Our discussion here starts from the first order cohomology and then we introduce Giraud’s method to
define the second order non-abelian cohomology groups using gerbes with liens. Since the method using
torsors to deal with the first order case comes from algebraic topology, we talk about (co)homology theory
in algebraic topology first.

(Co)homology in Algebraic Topology A typical homology theory in algebraic topology is the singular
homology. Suppose |∆n| is the geometric n-simplex and a singular n-simplex in a topological space X is
a continuous map σ : |∆n| → X . Sn(X) is the free abelian group whose basis consists of all singular
n-simplexes. Then we can define the differential map

dn : Sn(X)→ Sn−1(X), σ 7→
n∑
i=0

(−1)iσϵni

where ϵni : |∆n−1| → |∆n| sends (t0, · · · , tn−1) to (t0, · · · , 0, ti, · · · , tn−1). This defines a singular chain
complex S(X) for any topological space X . Singular homology groups are defined to be homology groups
of this chain complex. There are also some other homology theories such as simplicial homology. They are
isomorphic to each other for some typical spaces and all satisfy Eilenberg-Steenrod axioms.

For any abelian group A we have (co)chain complexes with the coefficient A i.e. Hom(S(X), A) and
S(X)⊗A. (Co)homology groupsH∗(X;A) andH∗(X;A) ofX with coefficientA are defined to be (co)homology
groups of these two new complexes.

Classifying Spaces Given an abelian group A for any non-negative integer n there exists an Eilenberg-
Maclane space K(A,n) such that its homotopy groups are trivial except πn(K(A,n)) = A. We sketch how
we can obtain such classifying spaces here. For n ≤ 1, K(G,n) exists for any group G which may not be
abelian. When n = 0 we can just regard G as a topological space with the discrete topology. For n = 1
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viewing G as a category with only one object whose morphism set is just the group G, then the geometric
realization of the nerve N(G) is homotopically equivalent to K(G, 1). This is a special case of the following
Quillen equivalence

| · | : sSet Top : Sing

Such argument is also valid for any groupoid G and in this case the fundamental groupoid of |N(G)| will
just be G. For n ≥ 2 the existence of K(A,n) comes from Dold-Kan correspondence

N : sAb Ch≥0(Z) : Γ

Since homotopy groups are abelian for n ≥ 2, K(G,n) does not exist for n ≥ 2 if G is non-abelian.
For every topological space X the class of maps from X to K(A,n) up to homotopy is denoted by

[X,K(A,n)]. Then a famous result in algebraic topology tells us there is a natural isomorphism

[X,K(A,n)]
∼−→ Hn(X;A)

for good enough space X such as CW-complexes. So this gives a way to define the first order non-abelian
cohomology group as [X,K(G, 1)] for any non-abelian group G. From this there exists another characteri-
zation for H1(X;G), which is classified by principal bundles.

p : E → X is a principal G-bundle or G-torsor over X where G is a topological group if p(g · e) = p(e) and
the induced map

G× E → E ×X E, (g, e) 7→ (g · e, e)

is a homeomorphism. We use the symbol BG to mean the classifying space K(G, 1) for G. Then Milnor
has proved there is a universal covering space EG over BG such that any principal G-bundle E on a CW-
complex X can be obtained uniquely by a map X → BG up to homotopy, along which the pullback of
EG will be isomorphic to E. In this sense the functor PG of principal G-bundles up to isomorphism is rep-
resented by BG in the homotopy category of CW-complexes. Therefore the first non-abelian cohomology
H1(X;G) also means the isomorphism class of principal G-bundles.

This interpretation is so powerful that we can define the first non-abelian cohomology for a topos which
consists of internal G-torsors.

Torsors in a Grothendieck Topos Now we suppose C is a site with a Grothendieck pretopology and we
consider the Grothendieck topos Shv(C). Given a group sheaf G especially when G is abelian, we define its
Čech complex for a cover {Ui → X|i ∈ I} as follows

0 −→
∏
i

G(Ui) −→
∏
i,j∈I

G(Ui ×X Uj) −→ · · ·

where any element (si1···in) ∈
∐
i1,··· ,in∈I G(Ui1···in) is sent to s(−1)

n+1

i1···in · · · s(−1)
1

i2···in+1
at the position G(Ui1...in+1

)
where Ui1···in = Ui1 ×X · · · ×X Uin . In the abelian case it actually defines a complex. For non-abelian case
we only focus on degree 1. Then in this case we have the group of cocyles

Z1({Ui},G) =

sij ∈ ∏
i,j∈I

G(Ui ×X Ui)
∣∣sij · sjk = sik


The equivalence relation is defined such that (sij) ∼ (tij) if there exists some (gi) ∈

∏
i∈I G(Ui) satisfying

sij = gi · tij · g−1j . Then this gives a cohomology group Ȟ1({Ui} ,G). Considering all coverings for X ,
we obtain Ȟ1(X,G) = colimȞ({Ui} ,G). It’s well known that this first order Čech cohomology group is
actually classified by G-torsors.

Definition 1.1.1. A sheaf F of sets is a G-torsor if G acts on the left of F such that
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(1). for every object X in C, there is a cover {Ui → X|i ∈ I} such that F(Ui) ̸= ∅;

(2). G × F → F ×F , (g, x)→ (gx, x) is an isomorphism.

We use the symbol Tors(G|X) to denote the category of torsors on the site C/X . This is a groupoid.
Actually for any G-torsor F , if F(U) ̸= ∅ then F|U ∼= G|U . From this we have a criterion for G-torsors.

Lemma 1.1.2. IfF is a G-sheaf, thenF is a G-torsor if and only if for allX ∈ Ob(C), there is a cover {Ui → X|i ∈ I}
such that F|Ui ∼= G|Ui as G-sheaves.

Now we give a proof how Ȟ1(X,G) classifies G-torsors.

Theorem 1.1.3. There is an isomorphism Tors(G|X)/iso ∼= Ȟ1(X,G)

Proof. At first from the first axiom of torsors, there is a cover {Ui → X|i ∈ I} for X such that F(Ui) ̸= ∅.
Hence we can choose si ∈ F(Ui). Then from the second axiom of torsors, we know there exists ∃gij ∈
G(Uij), gijsj = si such that gijsj = si. Note that this equality is valid in F(Uij). Since gij is unique,
gik = gijgjk which means (gij) ∈ Z1({Ui} ,G). This gives an element in Ȟ1(X,G) which is independent
from the choice of (si). If we choose another elemetns (ti), from the second axiom of torsors we know
∃!fi ∈ G(Ui), fisi = ti. If hijtj = ti, then we have

hijfjsj = hijtj = ti = fisi = figijsj

so that hij = h = figijf
−1
j which means (hij) ∼ (gij).

On the other hand, an element in Ȟ1(X,G) can be represented by an element in Ȟ1({Ui} ,G). Hence
we suppose [(gij)] ∈ Ȟ1({Ui} ,G) and we can glue G|Ui = GUi

to obtain a G-torsor. The gluing process is
obtained by gij : GUj

|Uij
∼−→ GUi

|Uij . If we use an element in Ȟ1({Vj} ,G) to represent the cohomology
class, then we can consider the refinement of the two coverings so that we can obtain isomorphic G-torsors.

Gerbes with Liens With the same idea we can define the second order non-abelian cohomology groups
which also classifies some certain geometric objects. This problem is originally solved by Giraud in [22].

Definition 1.1.4. A gerbe on a site C is a stack G fibered in groupoids which is locally non-empty and locally
connected. The two properties mean

• (locally non-empty): for any object X of C, there is a covering {Ui → |i ∈ X} such that G(Ui) is
non-empty;

• (locally connected): for any abject X of C and any two objects a, b in G(X), there is a covering {Ui →
|i ∈ X} such that there is an isomorphism a|Ui

∼−→ b|Ui in every G(Ui).

Gerbes are classified by second non-abelian cohomology which is carefully defined by Giraud. For any
object x in G(X), Hom(x, x) = Aut(x) is a sheaf of automorphisms on C/X . The sheaf condition follows
from the descent property of stacks. From the first axiom of gerbes, there is a covering {Ui → X|i ∈ X}
such that G(Ui) is non-empty. We choose an object xi in every G(Ui) and Aut(xi) is a sheaf of groups on
C/Ui. Note that here G(X) may be empty. Then for xi|Uij , xj |Uij ∈ G(Uij), from the second axiom of gerbes
there is covering {Uξij → Uij |ξ} for Uij and an isomorphism fξij : xj |Uξij

∼−→ xi|Uξij . Then this induces an
outer isomorphism of sheaves

λξij : Aut(xj)|Uξij → Aut(xi)|Uξij , u 7→ fξij · u · (f
ξ
ij)
−1

where λξij is dependent on the choice of fξij but for different choice λξij , λ
ζ
ij are equivalent on Uξζij = Uξij ×Uij

Uζij . It’s not difficult to see this. On Uξζij , λξij(u) = fξiju(f
ξ
ij)
−1, λζij(u) = fζiju(f

ζ
ij)
−1. Suppose fξζ =

fξij(f
ζ
ij)
−1 ∈ Aut(xi)(U

ξζ
ij ) and then fξζλζij(f

ξζ
ij )
−1 = λξij .
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For any two sheaves F , H of groups there is a concept of sheaf of outer isomorphisms Out(F ,H) which is
the associated sheaf of the presheaf

X 7→ Iso(F|X,H|X)/H(X)

where f ∼ h · f · h−1 for h ∈ H(X). Any two outer isomorphisms can be composed. Given two outer

isomorphisms F f−→ H g−→ K we have

(kgk−1) ◦ (hfh−1)(x) = (kgk−1)(hf(x)h−1) = kg(h)(gf(x))(kg(h))−1

and then (kgk−1) ◦ (hfh−1) ∼ g ◦ f .
Now on a gerbe G, for any two objects x, y ∈ G(X) we let Out(x, y) := Out(Aut(x),Aut(y)). Then

{λξij} given before can be glued to be a global outer isomorphism λij : Aut(xj)|Uij → Aut(xi)|Uij . A
lien for a gerbe G is defined to be lien(G) := (Aut(xi), λij) where λii = id. λij ◦ λjk locally sends u to
fijfjkuf

−1
jk f

−1
ij = (fijfjk)u(fijfjk)

−1. Therefore λij ◦ λjk are equivalent to λik as outer isomorphisms.

Definition 1.1.5 (Lien). An abstract lien F on C/X represented by a covering U = {Ui → X|i ∈ I} is
a collection of sheaves of groups Fi on C/Ui and outer isomorphisms λij : Fj |Uij → Fi|Uij such that
λii = id and λij ◦ λjk = λik.Given another abstract lien H = (Hk, µkl) represented by another cover V ,
an isomorphism between liens consists of a common refinement {Wα → X|α ∈ A} of U and V , and outer
isomorphisms φα : Fα → Hα such that φαλαβ = µαβφβ .

Hence for a gerbe G different coverings and different choices of elements will define isomorphic liens.
Then a gerbe G with lien F consists of (G, θ) where θ : lien(G) ∼−→ F . All gerbes with the lien F on C/X up
to isomorphism is denoted by Gerbes(X,F). Then a famous result in [22] asserts gerbes with the line F is
classified by the second cohomology group of F .

Theorem 1.1.6. Gerbes(X,F) ∼= Ȟ2(X,F)

The second cohomology group for a lien is given by really complicated relationships between 2-cocycles.
Details can be found in [10, Section 2] and [22].

Higher Case Now there is a natural question what higher non-abelian cohomollogy theories are like. An
essential point is that higher non-abelian cohomology must classify some certain higher geometric objects.
In lower cases they classify torsors and gerbes which are sheaves and stacks respectively. So a natural
hypothesis is that nth cohomology theory classifies some certain n-stacks. [10] tried to solve this problem
for 2-stacks and the third non-abelian cohomology theory.

In [26] Grothendieck gives his great insight about higher non-abelian cohomology theory. For an object
X in a site C the cohomology ofX with coefficient an n-stackF should be the n-category n-StacksC/X(X,F)
of global sections of F . With this idea in [38] Lurie defines the cohomology theory for any ∞-topos [38,
Definition 7.2.2.14] and the (n + 1)th cohomology theory just classifies what he calls n-gerbes. [38] gives a
detailed answer to higher cohomology theories and has obtained a great success.

1.1.2 Higher Stacks

We know roughly speaking classical stacks are (pseudo)functors from a site to Gpd the category of groupoids.
So intuitively higher stacks should be certain functors from a site to higher groupoids. Just like classical
stacks satisfying the descent condition, higher stacks should also satisfy some certain higher descent condi-
tion. Now there are at lest two problems. What are higher groupoids? What’s the higher descent condition?
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Homotopy Hypothesis As we have talked, for any groupoid there is a classifying space whose funda-
mental groupoid is just this groupoid. Therefore in this sense we have an equality

groupoid=homotopy 1-type

Then a natural hypothesis should be

n-groupoid=homotopy n-type

Especially when n converges to infinity, ∞-groupoids should be equivalent to homotopy ∞-types which
roughly mean topological spaces. So from this hypothesis, an∞-groupoid should at least contain all infor-
mation of homotopy groups of a topological space. This is homotopy hypothesis which means any theory for
∞-groupoids should at least induce an equivalence between∞-groupoids and the localization of topolog-
ical spaces with respect to weak homotopy equivalences. This is a test for theories of∞-groupoids.

In [26] Grothendieck gives really complicated axioms for∞-groupoids where he tries to describe mor-
phisms in an∞-groupoid directly and proves such defined∞-groupoids satisfy the homotopy hypothesis.
But nowadays we know Kan complexes serve a good model for∞-groupoids [14, Theorem 3.5.1] and the
Quillen equivalence between simplicial sets and topological spaces tells us that Kam complexes really sat-
isfy the homotopy hypothesis. From this point it seems Grothendeick’s effort in [26] is in vain. However,
it’s not really true. In Grothendieck’s opinion it’s tautological to define an∞-groupoid as a Kan complex
and in a letter to Tim Porter, he gave some reasons why he disliked this definition

• simplicial sets are not globular like the intuition of higher categories;

• composition in a Kan complex is not defined precisely, only up to homotopy.

But nowadays we just suppose the homotopy hypothesis holds and define∞-groupoids as Kan com-
plexes. In this thesis we also take this point. As for Grothendieck’s direct definition for∞-groupoids, you
can find details in [42].

Derived Stacks From our statements above, an∞-prestack should be a functor from a site to the category
of∞-groupoids i.e. Kan complexes. This actually generalizes the classical case since via the nerve functor
a usual groupoid is just a Kan complex whose higher homotopy groups are trivial. As for the descent
condition, it should be in homtopy sense. Here we take the point in [16] and say an ∞-prestack is an
∞-stack if it satisfies the descent condition in [16] (Definition 2.1.9).

If we let the site C be Affk the category of affine schemes, then our definition for higher stacks general-
izes the classical stacks appearing in moduli theory. Since affine schemes are dual to commutative algebras,
if we consider the opposite category dAffk of some certain derived commutative algebras such as simpli-
cial commutative algebras or commutative differential graded algebras, then we will obtain the concept of
derived prestakcs and derived stacks. Theses concepts can be summarized in the following diagram due to
Toën and Vezzosi.

Algk sSet

Gpd

dAlgk = sAlgk or cdgA≤0k KanComp

j

sheaves

i π0

N Π1

derived stacks

stacks

∞-stacks

For the definition of derived stacks, the first problem we should deal with is how we can equip derived
commutative algebras with a Grothendieck topology so that we can define the descent condition. There
is a concept model pre-topology (Definition 2.2.5) in [67] which can be defined in a model category so that it
induces a Grothendieck topology on the homotopy theory of this model category. With this concept we can
define higher stacks on a model site and derived stacks are a concrete example of these higher stacks.
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1.2 About this Thesis

This thesis is supervised by Prof. Joost Nuiten during my stay in France and it’s written as a Bachelor’s
thesis for Shandong University and an M1 thesis for Université Toulouse III. When I was a junior in Shan-
dong University, it was my first time to get to know something about simplicial theory or more precisely
abstract homotopy theory. At that time I have learned some Grothendieck’s formalization for algebraic ge-
ometry i.e. scheme theory especially his functorial point in FGA and the new edition of EGA I. This point
is emphasized in a reply of Prof. Bosch sending to me. He is really an enthusiastic professor and in his
letter he advised me to learn the Hilbert scheme which is really important no matter for this object itself or
the philosophy behind it. Since then I have been very curious about whether there are some connections
between what I have learned i.e. abstract homotopy theory and functorial algebraic geometry. With this
motivation Toën and Vezzosi’s works on homotopical algebraic geometry really open a new door for me so
I plan to go to France to complete my Bachelor’s thesis in this area.

Apart from the introduction, this thesis consists of three parts. In the first part we give a concise but
precise introduction to the subject homotopical algebraic geometry which is mainly the work of Toën and
Vezzosi in [67] and [68]. In this part we talk about simplicial presheaves on a usual Grothendieck site and a
model site which serve a concrete model for higher stacks. We also consider how we can equip the opposite
category of commutative differential graded algebras with a model pretopology so that we can obtain the
concept of derived stacks. In this sense this part is also an introduction to derived algebraic geometry.

The second part is about derived critical loci. For a real smooth manifold M of dimension n, we suppose
f is its global section i.e. a smooth function f : M → R. Then in differential geometry a critical point is
defined such that the induced function on tangent spaces at this point is not surjective. In our case here the
differential df should be zero at that point. Therefore the critical locus is just (df)−1(0). In some cases such
as f is Morse, the critical locus only consists of discrete points. But if we allow (M,f) to be more singular,
the structure of critical loci will be more complicated.

There is also a more categorical way to see critical loci. It’s just the following fiber product

Crit(f) M

M T∗M
df

0
⌟

where T∗M is the cotangent bundle over M , 0 sends x in M to (x, 0) and

df :M → T∗M, x 7→ (x, df(x)) = (x,
∂f

∂x1
(x)dx1, · · · ,

∂f

∂x1
(x)dxn)

Since M is Hausdorff, the diagonal map ∆ : M → M ×M is a homeomorphism to the image ∆(M). So
the fiber product Crit(f) is equivalent to (df)−1(0). It’s well known that in general there do not exist fiber
products in the category of smooth manifolds. Here Crit(f) will not be a smooth manifold. But in this thesis
we consider the derived version of this construction in the context of algebraic geometry which is also valid
in derived differential geometry. So for our purpose in this thesis, the critical loci should be in the derived
sense and it’s actually defined as a homotopy fiber product. In this second part following [70] we will show
this construction is dual to BV-formalization and serves a model for −1-shifted symplectic structure.

The third part is an appendix about many concepts and techniques in homotopical algebra i.e. model
categories which is necessary for reading this thesis especially the first part. In this appendix we give
detailed discussions about abstract homotopy theory and nearly all proofs of theorems stated are given.
Actually many constructions are based on homotopical algebra. For example the category of higher stacks
is actually a left Bousfield localization of the projective model category of simplicial presheaves. And the
derived critical locus is in fact a homotopy fiber product.
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2 Homotopical Algebraic Geometry

In this section we give a concise introduction to the subject homotopical algebraic geometry, an important
example of which is the derived algebriac geometry. Main references for this section are notes and papers
of Bertrand Toën and Gabriele Vezzosi especially [67] and [68].

2.1 Simplicial Presheaves

Suppose C is a small category and then a simplicial presheaf is a simplicial object on Pr(C) = SetC
op

i.e.
a functor ∆op → Pr(C) which is also equivalent to the functor Cop → sSet. The category of simplicial
presheves is denoted by sPr(C). Since sSet is a combinatorial model category, sPr(C) can be equipped
with projective and injective model structures (Remark A.4.5). And moreover it’s combinatorial as well.

Remark 2.1.1. We suppose sPr(C) is with the projective model structure. Then from the proof of Theorem
A.4.3 and the small object argument (Theorem A.1.11), cofibrations in sPr(C) are especially objectwise
cofibrations. And since pushouts in sPr(C) are objectwise, objectwise weak equivalences are preserved by
pushouts along cofibrations. Therefore sPr(C) is left proper which comes from the left properness of sSet.
Actually sPr(C) is proper.

Remark 2.1.2. sPr(C) has a natural simplicial model structure. For any simplicial set X , we also use the
symbol X to denote the constant simplcial presheaf X : Cop → sSet. Then

⊗ : sSet× sPr(C)→ sPr(C), (X,F) 7→ X ×F

If the right adjoint functor
Map : sPr(C)op × sPr(C)→ sSet

exists, then it must satisfy

HomsPr(C)(X ×F ,G) ∼= HomsSet(X,Map(F ,G))

Now we let X = ∆n. Therefore we obtain

HomsSet(∆
n,Map(F ,G)) ∼= Map(F ,G)n ∼= HomsPr(C)(∆

n ×F ,G)

Here we just define Map(F ,G)n = HomsPr(C)(∆
n × F ,G). Proofs that it actually defines a functor and

moreover is right adjoint to⊗ are similar to the case of presheaves. For the case of presheaves, you can find
details in [41, Section I.6].

Next to prove it’s actually a simplicial model category, it’s necessary to prove for a cofibration K ↣ L
in sSet and a fibration F ↠ G in sPr(C), FL → FK ×GK GL will be a fibration in sPr(C) which is a
weak equivalence if either of domain maps is a weak equivalence. But in sPr(C), weak equivalences and
fibrations are defined objectwise, this statement just follows the simplicial model structure on sSet. Note
that FK(c) = F(c)K is the function complex in sSet for every object c ∈ Ob(C).

This argument can be applied to any simplicial model categoryM. ThenMC will have the projective
simplicial model structure.

Remarks above just say sPr(C)proj is a left proper combinatorial simplicial model category.

Remark 2.1.3 (Enriched Yoneda’s Lemma). For any object c ∈ Ob(C), we can view is as a simplicial presheaf
such that for any a ∈ Ob(C), c(a) is the constant simplicial set HomC(a, c). This also means for any [n] in ∆,
cn is just the representable functor Cop → Set of c. Since [0] is the terminal object in ∆, there exists a unique
map [n]→ [0]. Hence any morphism c→ F in sPr(C) in completely determined by the morphism c0 → F0

in Pr(C)
c0 cn

F0 Fn

10



Then we will have

Map(c,F)n = HomsSet(∆
n,Map(c,F)) ∼= HomsPr(C)(∆

n ⊗ c,F) ∼= HomsPr(C)(c,F∆n

)

= HomPr(C)(c0,F∆n

0 ) = F∆n

0 (c)

= F(c)∆
n

0 = HomsSet(∆
0,F(c)∆

n

)

∼= HomsSet(∆
0 ×∆n,F(c))

= HomsSet(∆
n,F(c)) ∼= F(c)n

Therefore Map(c,F) = F(c) in sSet. It’s the enriched Yoneda’s lemma.

In the following we suppose C is a site i.e. a category with Grothendieck topology or pretopology. For
definitions you can read [41, Section III.2].

Definition 2.1.4. A map f : F → G of simplicial presheaves is called a local trivial fibration if it has the RLP
wrt ∂∆n → ∆n locally for all n ≥ 0, which means for any object c of Cand any lifting problem

∂∆n ⊗ c F

∆n ⊗ c G

there exists a covering sieve {ui → c|i ∈ I} such that the lifting problem above admits a solution on this
sieve in the sense that for any ui → c

∂∆n ⊗ ui ∂∆n ⊗ c F

∆n ⊗ ui ∆n ⊗ c G

Remark 2.1.5. From Remark 2.1.3, Map(c,F) = F(c). Therefore the definition of locally trivial fibrations
above also means for any object c of C, there is a covering sieve {ui → c} such that the following lifting
problem solves

∂∆n F(c) F(ui)

∆n G(c) G(ui)

Note that this is different from saying F(ui)→ G(ui) is trivial fibration in sSet.

Proposition 2.1.6. A map f : F → G of simplicial presheaves has the RLP wrt a map i : X → Y of simplicial sets
locally if and only if the induced map

(i∗, f∗) = {̂i, f} : FY → FX ×GX GY

of simplicial presheves is a local epimorphism in degree 0 as a morphism of presheaves in Pr(C).

Proof. Given a lifting problem
X ⊗ c F

Y ⊗ c G

11



it has solution Y ⊗ c→ F if and only if the induce map c→ FX ×GX GY factors through FY .

c

• FX

GY GX

⌟

Since this problem has a solution locally, c → FX ×GX GY will factor through FY locally. From Remark
2.1.3, the map c→ FX×GX GY is totally determined by the morphism at zero level. But c0 → (FX×GX GY )0
is equivalent to an element in (FX ×GX GY )0(c). Therefore the locally lifting property actually means any
element in (FX ×GX GY )0(c) admits a local lifting to FY0 which is equivalent to saying {̂i, f}0 is locally
surjective.

So there is another characterization for local trivial fibrations, i.e. F∆n → F∂∆n ×G∂∆n G∆n

is a local
epimorphism at the level of 0.

Definition 2.1.7. Let c be an object in C. A hypercover of c consists of a map U → c of simplicial presheves
such that

(1). for each n, Un is a product of repersentable presheaves on C

(2). the map U → c is a local trivial fibration.

Example 2.1.8. For any covering sieve {ui → c}, its corresponding Čech nerve N(u) is defined to be the
simplicial presheaf such that

N(u)n :=
∐

(i0,··· ,in)

ui0 ×c · · · ×c uin

For any (i0, · · · , in) there is a natual map ui0×c · · ·×cuin → c and this induces a mapN(u)→ c of simplicial
presheaves.

For any object a of C and any lifting problem

∂∆n N(u)(a)

∆n c(a)

since ∆n → c(a) is just an element in HomC(a, c), we can obtain a covering sieve on a along this map a→ c.
Note that ∂∆n is the coequalizer of∐

0≤i<j≤n∆
n−2 ∐

0≤k≤n∆
n−1 ∂∆n ⊆ ∆n

for n ≥ 2. Then ∂∆n → N(u)(a) consists of some elements in N(u)(a)n−1 which coincide on N(u)(a)n−2.
This means for two maps (f0, · · · , f̂i, · · · , fn) and (g0, · · · , ĝj , · · · , gn) from a to u0 ×c · · · ×c ûi ×c · · · ×c un,
where fk, gk : a→ uk and •̂means this element does not exist,

(f0, · · · , f̂i, · · · , f̂j , · · · , fn) = (g0, · · · , ĝi, · · · , ĝj , · · · , gn)

If n ≥ 2, obviously there will exist a lifting map from a to u0 ×c · · · ×c un which is equivalent to the lifting
∆n → N(u)(a).
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If n = 1, ∂∆1 = ∆0
∐

∆0. Then ∂∆1 → N(u)(a) consists of a pair of maps (f : a→ u0, g : a→ u1) such
that when composing u0 → c and u1 → c, there is an element in c(a)1 connecting them, which will mean
(f, g) defines a map a→ u0 ×c u1. It’s just the lifting.

If n = 0, then ∂∆0 = ∅. Though a map a→ c may not be lifted to be a map a→ ui for some i, there can
exist a covering sieve of a such that they factor through some ui. This covering sieve can be just obtained
by {ui → c} along the map a→ c.

This example gives the intuition of a hypercover.

For a hypercover U → c, we can just write it as

· · ·
∐
ui11

∐
ui00 c

where Un =
∐
in
uinn

Definition 2.1.9. A fibrant object F in sPr(C)proj satisfies the descent for a hypercover U → c if the natural
map from F(c) to the homotopy limit of the diagram

∏
i0
F(ui00 )

∏
i1
F(ui11 ) · · ·

is a weak equivalence between simplicial sets. Here products range over representable summands of each
Un. If F is not fibrant, we say it satisfies the descent if its fibrant replacement satisfies thie property.

Remark 2.1.10. The diagram in the definition above is obtained by applying the functor Map(−,F) to the
diagram of hypercover U → c. We denote this diagram by F(U).

Remark 2.1.11. Though the collection of all hypercovers may be big, we can find a small set S of hyper-
covers which is dense in the sense that every hypercover can be obtained by refining a nice hypercover in
this set [16, Proposition 6.6]. When C is better enough i.e. a Verdier site [16, Definition 9.1], there will exist
such small set S, elements in which are cofibrant in sPr(C)proj [16, Theorem 9.6]. After having the small set
S, we can do left Bousfield localization on sPr(C)proj to obtain the local model category sPr(C)locproj . Sim-
ilarly we also have sPr(C)locinj which is just the Jardine’s model structure on sPr(C)Jar. Details can be found
in [16, Theorem 6.2]. In this way, weak equivalences in local model categories are just local weak equivalences
which means they induce weak equivalences on stalks.

Remark 2.1.12 (Jardine’s Model Structure). On sPr(C)Jar, weak equivalences are local weak equivalences.
We need to explain the concept local weak equivalence [35, Section 4.1]. For a map f : F → G of simplicial
presheaves can induce maps of presheaves. For n = 0, π0F is a presheaf of path components of F such that
for any object c of C, π0F(c) = π0(F(c)). For n > 0 we can define a presheaf πn(F|c, x) : (C ↓ c)op → Set
where x ∈ F0(c) such that it sends any map f : u→ c to the homotopy group πn(F(u), f∗(x)), where we can
replace F(u) by any its fibrant replacement and define the homotopy group to be the simplicial homotopy
group of that Kan complex or we can just let πn(F(u), f∗(x)) = πn(|F(u)|, f∗(x)) the homotopy group
of the topological space |F(u)|. Next we use π̃0F and π̃n(F|c, x) to denote sheaves associated with π0F
and πn(F|c, x) respectively. A local weak equivalence means it induces isomorphisms on these homotopy
sheaves.

If C is the category of open subsets of some topological space X , then this definition of local weak
equivalences are equivalent to that they induce weak equivalences Fx → Gx in stalks for any point x ∈ X .
This is also valid for sites having enough points.

Cofibrations in sPr(C)Jar are objectwise cofirbations and fibrations are those having the RLP wrt to all
maps which are cofibrations and local weak equivalences. These make sPr(C)Jar a proper simplicial model
category [35, Theorem 5.8]. In this way it’s difficult to describe fibrant objects which is clear when focusing
on sPr(C)locinj .

In the following we prove local objects in local model categories are just those satisfying descents.
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Lemma 2.1.13 (Co-Yoneda Lemma). 1 Suppose C is a small category and h : C → Pr(C) is the Yoneda embedding.
Then any presheaf P : Cop → Set is the coequalizer of the following diagram

∐
u:c′→c∈C
p∈P (c)

h(c′)
∐
c∈C

p∈P (c)

h(c) P
θ

τ

ϵ

where for any object b of C and maps v : b→ c or c′,

θu,p(v) = (c, p;uv), τu,p(v) = (c′, Pu(p); v) and ϵc,p(v) = Pv(p)

.

Proof. Since colimits and limits of presheaves are objectwise, we can let the object b fixed and prove P (b) is
the coequalizer.

At first we prove ϵ ◦ θ = ϵ ◦ τ . For v : b → c′, θu,p(v) = (c, p;uv) and τu,p(v) = (c′, Pu(p); v). Then
Pv(Pu(p)) = Puv(p).

Next we give a map π :
∐

c∈C, p∈P (c)

HomC(b, c) → X such that π ◦ θ = π ◦ τ . Notice that ϵb,p(idb) =

Pidb
(p) = p. ϵ is surjective and if there exits some δ : P (b) → X satisfying δ ◦ ϵ = π, then δ will be

unique. To prove the existence of δ, we just need to prove for any two elements (c1, p1; v1) and (c2, p2 : v2)
such that ϵ(c1, p1; v1) = ϵ(c2, p2; v2) then π(c1, p1; v1) = π(c2, p2 : v2). ϵ(c1, p1; v1) = ϵ(c2, p2 : v2) means
Pv1(p1) = Pv2(p2) for vi : b→ ci.

Since θvi,pi(idb) = (ci, pi; vi) and τvi,pi(idb) = (b, Pvi(pi); idb), τv1,p1(idb) = τv2,p2(idb). Then πci,pi(vi) =
π ◦ θvi,pi(idb) = π ◦ τvi,pi(idb) = πb,Pui

(pi)(idb).

Remark 2.1.14. There is a natural way for Pr(C) to be enriched over Set such that S⊗P =
∐
s∈S P

∼= S×P
where P is a presheaf and S is a set viewing it as a constant presheaf as well. Then the above lemma actually
says P ∼=

∫ c∈C
P (c)⊗ h(c) is the coend. For a simplicial version you can look at the Definition A.5.17.

For a presheaf P : Cop → Set, we can define a Cop-indexed diagramDP in Pr(C) such that for any object
c of C, DP (c) is the constant presheaf Pc of the set P (c). Then

∫ c∈Cop
h(c) × DP (c) is just

∫ c∈C
P (c) ⊗ h(c)

since
∐

u:c′→c
p∈P (c)

h(c′) ∼=
∐

u:c′→c

(
h(c′)× Pc

)
. Therefore P ∼=

∫ c∈Cop
h(c)×DP (c).

Lemma 2.1.15. If F is a simplicial presheaf and we define a ∆op-indexed diagram in sPr(C) such that it sends [n]
to Fn which is a presheaf of sets but we view it as a discrete simplicial presheaf. Then the geometric realization |DF |
is just F .

Proof. In Definition A.5.17, we have |DF | = △⊗∆op DF =
∫ [n]∈∆op

∆n ⊗DF ([n]).
For a fixed object c of C, we obtain |DF |c =

∫ [n]∈∆op

∆n⊗DF ([n], c). Since DF ([n], c) is just the constant
simplicial set of Fc([n]), from the remark above we see it will be isomorphic to Fc. Therefore |DF | ∼= F .

Lemma 2.1.16. Under assumptions above, in sPr(C)inj the Bousfield-Kan map hocolimDF → |DF | is a weak
equivalence. And therefore hocolimDF is weakly equivalent to F .

Proof. In sPr(C)inj cofibrations are just objectwise cofibrations and in sSet cofibrations are injective maps.
Therefore any object F in sPr(C)inj is cofibrant. Then from Definition A.5.22, for any simplicial object X
in sPr(C)inj its homotopy colimit is computed by the coend N(− ↓ ∆op)op ⊗∆op X . Fixing the object c of
C, Xc will be a simplicial object in sSet and its homotopy colimit is just the value of hocolimX on c. From
Corollary A.5.30 we see the map hocolimXc → |Xc| is a weak equivalence. But |Xc| = |X|(c), this means
the Bousfield-Kan map hocolimX → |X| is an objectwise weak equivalence. Especially when X = DF ,
hocolimDF → |DF | is a weak equivalence.

1 [41, Exerciese 11 of Chapter I in p63]
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The above two lemmas are in [16, Remark 2.1].

Theorem 2.1.17. 2

(1). In sPr(C)inj , a simplicial presheaf F satisfies descents for any hypercover U → c if and only if RMap(c,F)→
RMap(U ,F) is an isomorphism in Ho(sSet).

(2). In sPr(C)proj , a simplicial presheafF satisfies descents for any hypercover U → c if and only if RMap(c,F)→
RMap(U ,F) is an isomorphism in Ho(sSet).

These mean local objects are just those satisfying descents for hypercovers.

Proof. For (1), we just need to prove Map(c, F̂) → Map(U , F̂) is a weak equivalence where F̂ is a fibrant
replacement of F . Since the property of satisying descents is also for fibrant obejcts, we can just assume F
is fibrant in sPr(C)inj .

LetDU be a simplciial object in sPr(C)inj such that for any [n],DU ([n]) is the discrete simplicial presehaf
Un. Then by Lemma 2.1.16, hocolimDU → |DU | = U is a weak equivalence. Next according to Proposition
A.5.16, the induced map Map(U ,F)→ Map(hocolimDU ,F) is a weak equivalence. Moreover

Map(hocolimDU ,F) ≃ holimMap(DU ,F)

is an isomorphism in Ho(sSet) which is a corollary of Theorem A.3.8. Then it’s clear Map(c,F) = F(c) →
Map(U ,F) is a weak equivalence if and only if F(c) → holimMap(DU ,F) is a weak equivalence, i.e. satis-
fying the descent.

For (2), c is cofibrant in sPr(C)proj from Remark 2.1.3 since trivial fibrations in sSet are surjective. For
DU , DU ([n]) = Un is a coproduct of representable presheaves hence being cofibrant in sPr(C)proj . Then
from Definition A.5.22, its homotopy colimit can be computed as hocolimDU = N(− ↓ ∆op)⊗∆op DU which
is cofibrant by Remark A.5.21. Similar to Lemma 2.1.16, hocolimDU → |DU | = U is a weak equivalence.
Therefore hocolimDU is a cofibrant replacement of U . The remaining proof is the same as in (1).

Remark 2.1.18. According to Theorem A.6.14, fibrant objects in local model categories are just local ob-
jects that are fibrant in original model categories. From Remark A.6.16, the fully faithful functor Rid :
Ho(sPr(C)loc)→ Ho(sPr(C)glob) makes Ho(sPr(C)loc) a full subcategory of Ho(sPr(C)glob) whose essential
image consists of all local objects i.e. simplicial presheaves satisfying descents for every hypercover, and we
call them stacks more precisely higher stacks or∞-stacks. Ho(sPr(C)loc) is the category of stacks which is also
denoted by St(C). The category Ho(sPr(C)glob) is the category of prestacks and the stackification functor is the
left derived functor a = Lid. Moreover the left identity map id : sPr(C)glob → sPr(C)loc commutes with ho-
motopy pullbacks [67, Proposition 3.4.10], since local weak equivalences are preserved by pullbacks along
objectwise fibrations and from Theorem A.4.10 homotopy pullbacks can be computed in a way replacing
one side by an objectwise fibration.

2.1.1 Truncation

Next we discuss relationships between higher stacks and sheaves or classical stacks defined for example
in [71], but we suppose classical stacks are fibered in groupoids.

A simplicial set is n-truncated if it has trivial homotopy groups for k > n, and we can define truncations
for any simplicial model category.

Definition 2.1.19. 3 Suppose M is a simplicial model category. An object x in M or Ho(M) is called n-
truncated if for any object y ∈ M, RMap(y, x) is n-truncated as a simplicial set. An object x inM is called
truncated if it’s n-truncated for some integer n <∞.

2 [16, Lemma4.4]
3 [67, Definition 3.7.1]
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Remark 2.1.20. IfM = sSet, then the definition above is equivalent to the usual one. If for a simplicial set
x, it’s n-truncated in the sense of the definition above, then we can choose y = ∆0, then Map(∆0, Px) = Px
where Px is a fibrant replacement of x. Since Px has the some homotopy type of x, this means x is n-
truncated as a simplicial set.

Conversely if x is n-truncated as a simplical set, then so is Px. For any map (∆k, ∂∆k) → Map(y, Px),
it’s equivalent to a map (∆k × y, ∂∆k × y)→ Px. Since Px is a Kan complex, Map(y, Px) is a Kan complex
as well. Therefore its simplicial homotopy groups are the correct homotopy types. There is a simplicial
homotopy between the map (∆k, ∂∆K) → (Px, ∗) and the trivial map. Applying − × y to this simplicial
homotopy, we see (∆k × y, ∂∆k × y) → Px is homotopically equivalent to a map y → Px which is just a
point in Map(y, Px)0 that means this map is homotopically trivial.

A generalized version of the remark above for truncated simplicial presheaves is the following propo-
sition which is in [67, Lemma 3.7.6].

Proposition 2.1.21. The following two statements are equivalent for a simplicial presheaf F in sPr(C)loc.

(1). F is an n-truncated object in sPr(C)loc.

(2). For any object c of C and any element x ∈ F0(c), the homotopy group πk(F(c), x) is trivial for all k > n.

There is also an n-truncated local model structure on sPr(C) in [67, Section 3.7], which is denoted by
sPr(C)≤nloc . Weak equivalences in it are local n-equivalences which means they induce isomorphisms on ho-
motopy sheaves for i ≤ n. Then sPr(C)≤nloc will be the left Bousfield localization of sPr(C)loc with respect to
∂∆i ⊗ c→ ∆i ⊗ c for all i > n and objects c of C [67, Corollary 3.7.4], whose fibrant objects are n-truncated
objects which are fibrant in the original local model category.

With the notion of trunction, in the following we will see sheaves are 0-truncated simplicial presehaves
and classical stacks are 1-truncated simplicial presheaves. We first talk about the case of sheaves.

In the category Shv(C) of sheaves on a site C, isomorphisms are those injective and locally surjective
maps4. The set of local isomorphisms (injective and locally surjective) in Pr(C) is denoted by W . Then
sheaves are W -local objects since the sheafification functor a is left adjoint and sends local isomorphisms
to isomorphisms in Shv(C). And moreover for any presheaf F , the natural map F → aF is actually a local
isomorphism. Hence (Pr(C),W ) has good localizations (Definition A.6.2). From Theorem A.6.7 we see
Shv(C) is equivalent to Pr(C)[W−1].

Viewing a presheaf as a discrete simplicial presehaf, we obtain an embedding functor j : Pr(C) →
sPr(C). Discrete simplicial sets have trivial homotopy groups for k ≥ 1 and hence its image consists of
0-truncated simplicial presheaves. From the definition of local weak equivalences, it’s clear j sends local
isomorphisms between presheaves to local weak equivalences. Then it induces a functor Pr(C)[W−1] →
Ho(sPr(C)loc). It’s actually Shv(C) ↪→ Pr(C) γ◦j−−→ Ho(sPr(C)loc). [61, Proposition 3.0.3] and [65, Proposition
3.2.7] say this functor is fully faithful. In fact the functor π0 : sPr(C)→ Pr(C) sending a simplicial presheaf
to its homotopy presheaf of path components sends local weak equivalences to local isomorphisms since
for a map of presheaves it’s a local isomorphism if and only if its sheafification is an isomorphism between
sheaves. Then it gives a functor Ho(sPr(C)loc) → Shv(C). [67, Proposition 3.7.8] shows this functor is an
equivalence between 0-truncated higher stacks and sheaves, whose inverse is the functor we have defined
above.

Actually it’s very natural to see that sheaves are simplicial presheaves satisfying Čech descent with re-
spect to Čech nerves. But [16, Corollary A.9] shows that for n-truncated simplicial presheaves, they satisfy
descent for all hypercovers if and only if they satisfy Čech descent. In this way it’s also clear to see sheaves
are 0-truncated higher stacks.

As for stacks it’s similar to the case of sheaves. [65, Corollary 3.2.5] asserts there is also a fully faith-
ful functor from the category St(C)[(1-iso)−1] of stacks to Ho(sPr(C)loc) whose essential image consists

4See [41, Corollary 5 in section 7 chapter III]
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of 1-truncated simplicial presheaves. Also in [29, Theorem 3.9], Hollander proves a category fibered in
groupoids is a classical stack if and only if it satisfies descent for Čech nerves (this will be equivalent to
satisfying descent for all hypercovers [16, Corollary A.9]) though in that article the descent is computed in
groupoids. More details of the equivalence between classical stacks and 1-truncated simplicial presheaves
can be found in [61, Section 4] and [65, Section 3.2.1].

2.2 Higher Stacks on the Model Site

In the following we do not suppose C is a site but just a model category in which the set of weak equiv-
alences is denoted by W . Obviously the structure of sPr(C)glob is irrelevant with the model structure on
C which means it does not contain any homotopical information in C. Therefore we want to deal with a
model category sPr(C) different from sPr(C)glob. For any object c of C, it corresponds to a constant sim-
plicial presheaf which is also denoted by c such that for any integer n, cn is the representable presheaf of c.
Let

hW := {a→ b ∈ sPr(C)|a→ b ∈W ⊆ Mor(C)}
and we define C∧ := LhW

sPr(C)glob the left Bousfield localization of sPr(C)glob with respect to the set hW .
To avoid dealing with a similar condition twice, in the following we just consider the case of sPr(C)proj .

Note that viewing an object of C as a constant simplicial presheaf is a fully faithful embedding C →
sPr(C). And since the left Bousfield localization will not change the underlying categorical structure, we
obtain a fully faithful embedding h : C → C∧. Moreover this functor sends weak equivalences to weak
equivalences. Then passing to homotopy categories, we have Ho(h) : Ho(C) → Ho(C∧). Now a natural
question arises. Is this functor still fully faithful? The answer is positive and we will solve this problem
following [67].

Suppose Γ : C → C∆ is a cosimplicial resolution functor sending an object c of C to its cosimplicial resolu-
tion (see Definition A.4.19) i.e. a Reedy cofibrant replacement of the constant cosimplicial object c. Moreover
we assume there is a natural transformation from Γ to the constant cosimplicial functor. In most cases this
assumption is satisfied since most model categories we deal with are functorial. Define

h : C → sPr(C), c 7→ HomC(Γ(−), c)

If c is fibrant in C, then [28, Proposirion 16.4.6] shows that the simplicial presheaf HomC(Γ(−), c) is fi-
brant in sPr(C)proj and the functor h sends any trivial fibration c→ d to a trivial fibration HomC(Γ(−), c)→
HomC(Γ(−), d). Then a dual version of Proposition A.3.3 implies there is a right derived functor

Rh : Ho(C)→ Ho(sPr(C)), c 7→ h(Rc)

where Rc is a fibrant replacement of c in C. Moreover since trivial fibrations will not be changed in the
process of left Bousfield localization, h : C → C∧ will preserve trivial fibrations as well and there is also a
right derived functor. We can also prove h : C → C∧ preserves fibrant objects.

Theorem A.6.14 tells us that fibrant objects in C∧ are just those fibrant objects in sPr(C)proj which are
hW -local. Suppose a→ b belongs to hW , it’s necessary to prove

RMap(b,HomC(Γ(−), c))→ RMap(a,HomC(Γ(−), c))

is an isomorphism in Ho(sSet). But since a is a constant simplicial presheaf, a will be cofibrant. So if we
assume c is fibrant, the map above will be the following map

HomC(Γ(b), c)→ HomC(Γ(a), c)

of simplicial sets. Since in the Reedy model category C∆ weak equivalences are objectwise, a → b will be
a weak equivalence of constant cosimplicial objects. Then it induces a weak equivalence Γ(a) → Γ(b) of
Reedy cofibrant objects. Then from Lemma A.3.2 and [28, Proposition 16.4.6], the map HomC(Γ(b), c) →
HomC(Γ(a), c) will be a weak equivalence of simplicial sets.

The statement above implies the following fact.
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Lemma 2.2.1. A simplicial presheaf F is a hW -local object if and only if viewing a functor Cop → sSet, F preserves
weak equivalences.

Then with Theorem A.6.14 we have

Corollary 2.2.2. An object F in C∧ is fibrant if and only if it’s objectwise fibrant and preserves weak equivalences
when viewing it as Cop → sSet.

Theorem 2.2.3 (Model Yoneda’s Lemma). 5

(1). The two functors Ho(h), Rh : Ho(C)→ Ho(C∧) are canonically isomorphic.

(2). Ho(h) and Rh are fully faithful.

Proof. For (1), it’s [67, Lemma 4.2.2].
For (2), according to the technique of simplicial localization via left homotopy function complexes, we have

HomHo(C)(a, b) = π0Map(a, b) = π0HomC(Γ(a), Rb)

where Γ(a) is a cosimplicial resolution and Rb is a fibrant replacement. But

HomC(Γ(a), Rb) = h(Rb)(a) ∼= Map(a, h(Rb))

Since a is cofibrant in C∧ and h preserves fibrant objects,

π0Map(a, h(Rb)) = HomHo(C∧)(a, h(Rb))

Note that C∧ is a simplicial model category and then the equality above can be seen in the proof of Lemma
A.5.15. Finally the isomorphism between Ho(h) and Rh proves Rh is fully faithful.

Model Yoneda’s lemma gets its name for the following corollary.

Corollary 2.2.4. For any fibrant object F in C∧ we have

RMap(Rh(c),F) ∼= R(Ho(h)(c),F) ∼= RMap(c,F) ∼= F(c)

To apply the theory of simplicial presheaves on a site in last section to the case of model categories, we
need to define the concept of topology on a model category.

Definition 2.2.5. A model pre-topology τ on a model category C associates every object c of C with a set
Covτ (c) of families of maps {ui → c|i ∈ I} in Ho(C) such that

(1). (Stability) For any object c of C and any isomorphism a→ c in Ho(C), {a→ c} is in Covτ (c).

(2). (Composition) If {ui → c|i ∈ I} belongs to Covτ (c) and for any i, {vij → ui|j ∈ Ji} is in Covτ (ui),
then the family {vij → c|i ∈ I, j ∈ Ji} is an element of Covτ (c).

(3). (Homotopy base change) Assume the two conditions above hold. For any {ui → c|i ∈ I} in Covτ (c)
and any morphism a→ c in Ho(C), the family {ui ×hc a→ a|i ∈ I} is in Covτ (a) where −×h −means
homotopy pullbacks.

A model category with a model pre-topology (C, τ) is called a model site.

Remark 2.2.6. ui ×hc a is the homotopy pullback of ui → c← a in Ho(C). Note that in Ho(C),

HomHo(C)(a, c) = [Qa,Rc] = HomC(Qa,Rc)/ ∼

where Qa is a cofibrant replacement and Rc is a fibrant replacement. To compute the homotopy pulllback
above, we can find a lifting Qui → Rc ← Qa and compute this homotopy pullback which is only up to
non-canonical isomorphisms in Ho(C).

5 [67, Lemma 4.2.2 and Theorem 4.2.3]
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In the classical case, there is an equivalence between Grothendieck pre-topology and Grothendieck
topology. Details can be found in [41, Section III.2]. We also have a similar relation here. Any model pre-
topology τ can induces a Grothendieck topology on Ho(C) natually such that a sieve {ui → c|i ∈ I} is a
covering sieve if and only if it contains some element in Covτ (c). Conversely any Grothendieck topology
can also induce a model pre-topology. In this sense, the two notions are equivalent.

Higher prestacks on a model site (C, τ) are just objects in the category of Ho(C∧) or simply objects in
C∧. To obtain higher stacks on the model site, we also need concepts of hypercovers and descent. And then
we can do left Bousfield localization with respect to these hypercovers. In this way, weak equivalences we
obtain will be homotopy local weak equivalences and we also clled them π∗-equivalences.

Remark 2.2.7 (π∗-equivalences). Suppose (C, τ) is a model site. F is a prestack in C∧ and RF is a fibrant
replacement in C∧. πpr0 (RF) is a presheaf on C sending any object c of C to the set π0(RF(c)) of components.
Since fibrant objects in C∧ are fibrant in sPr(C), there will exists objectwise weak equivalences between any
two different fibrant replacements. Then πpr0 (RF) is well defined up to isomorphism and we get a functor

πeq0 : C∧ → Pr(C), F 7→ πpr0 (RF)

A weak equivalence between F and G in C∧ will induce a weak equivalence between RF and RG. But
they are hW -local. From Lemma A.6.13, it will be a weak equivalence in sPr(C). And then the induced
morphism between πpr0 (F) and πpr0 (G) will be an isomorphism. Therefore πeq0 factors through Ho(C).

On the other hand for any weak equivalence a→ b in C, it will be a weak equivalence in C∧. Then from
Proposition A.5.16, Map(b, RF) → Map(a,RF) will be a weak equivalence of simplicial sets. Especially at
the level of 0, it’s an isomorphism. This means πpr0 (RF) factors through Ho(C)op. Therefore we can view
πeq0 as the functor

πeq0 : Ho(C∧)→ Pr(Ho(C))

.
As we have stated, any model pre-topology can induce a Grothendieck topology in Ho(C). We can the

do sheafification on Ho(C) and we obtain

πτ0 : Ho(C∧)→ Shv(Ho(C))

If τ is clear, we can omit this symbol.
For higher cases it’s more subtle. Just like the definition of local weak equivalences, we work on C/c for

an object c of C but here we need to suppose c is fibrant in C. If C is right proper, then this assumption is not
necessary. We explain the reason. In C/c a morphism is a weak equivalence, a cofibration or a fibration if its
image in C is such one. Then a fibrant object in C/c is just a fibration in C with codomain c. Then for an object
a→ c in C/c, we replace it by its fibrant replacement via the factorization a→ b→ c in C such that b→ c is
a fibration. If we suppose c is fibrant, then b will be fibrant. From a dual version of Proposition A.4.7 and
Remark A.4.8, we conclude in this case the homotopy pullback in C/c will be preserved when passing to C.
But according to Theorem A.4.10, if C is right proper, homotopy pullbacks will be preserved no matter c is
fibrant or not. In this way we can define a pre-topology in Ho(C/c) such that a family of maps is a covering
if its image in Ho(C) is a covering. This will satisfy axioms of model pre-topology. The remainder will be
similar to the previous one. For any prestack F , any object c in C and any element x ∈ F0(c), we have a
homotopy sheaf πn(F|c, x) on Ho(C/c).

π∗-equivalences are just those maps inducing isomorphisms on these homotopy sheaves.

The definition of πn(F|c, x) in [67, Definition 4.5.3] looks different from what we state here but they are
equivalent. Actually there is an effective way to compute higher homotopy groups for a Kan complex, in
which we can only compute the set of components. For any Kan complex X and x ∈ X0,

πn(X,x) = π0Fn(X)x

where Fn(X)x = ∆0 ×X∂∆n X∂∆n

. Details can be found in [35, Section 4.1].
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To obtain the model category of higher stacks on the model site with weak equivalences being π∗-
equivalences, we need to do left Bousdield localization on C∧ with respect to a certain small set of “hy-
percovers”. The notion of hypercovers here is really subtle. From Proposition 2.1 we know in sPr(C), a
morphism F → G is a local trivial fibration if F∆n → F∂∆n ×G∂∆n G∆n

is a local epimorphism at the level
of 0. But for a model site C the Grothendieck topology is on Ho(C). So we need to say a local epimorphism
at the level of homotopy. In Definition 2.1.4 of local trivial fibrations, commutative diagrams are strict. But
here commutative diagrams implying lifting properties should be up to homotopy.

Definition 2.2.8. A morphism F → G in Ho(C∧) is called a τ -covering if the induced morphism π0(F) →
π0(G) is an epimorphism of sheaves.

[67, Proposition 3.1.4] characterizes τ -coverings as homotopy locally surjective morphisms. Therefore
using this concept we can obtain a homotopy analogue of local trivial fibrations. So a homotopy τ -covering
for a fibrant object c of C can be defined to be a morphism U → c of simplicial presheaves such that

(1). for each n, Un is a coproduct of representable presheaves

(2). U∆n → U∂∆n ×h
c∂∆n c∆

n

is a covering in Ho(C∧).

Note that there is a more general definition of homotopy τ -coverings concerning simplicial objects in
sPr(C). It’s in [67, Definition 3.2.3]. Then we can do left Bousfield localization with respect to a certain
small set of τ -hypercovers. [67, Theorem 4.6.1] shows elements in this small set can be pseudo-representable
hypercovers ( [67, Definition 4.4.1]). Then in this local model category we obtain, weak equivalences are just
π∗-equivalences and fibrant objects are those fibrant in C∧ while satisfying hyperdescent for hypercovers [67,
Definition 4.6.5 and Corollary 4.6.3].

Here the local model category is denoted by C∼,τ . Objects in Ho(C∼,τ ), which is also denoted by St(C, τ)
and if τ is clear, it can be omitted, are called higher stacks on the model site.

2.3 Geometric Stacks

In this section we study how we can apply the theory of simplicial presheaves to algebraic geometry. As we
have said sheaves are 0-truncated higher stacks and usual stacks are 1-truncated higher stacks. In algebraic
geometry a special class of stacks are concerned i.e. Deligne-Mumford stacks or Artin stacks. The other name
for Artin stacks is algebraic stacks. These stacks play an important role in the moduli theory and they have
some geometric nature. To begin with this section, we first talk about definitions for two stacks above6 and
then we consider their generalization for higher cases. In the next section we study its derived case i.e.
derived algebraic geometry.

2.3.1 Classical Geometric Stacks

In the category Schk of schemes where k is a commutative ring there are some useful Grothendieck topolo-
gies which are Zariski topology (zar), étale topology (et), locally of finite presentation and faithfully flat
topology (fppf) and faithfully flat and quasi-compact topology (fpqc).7 For definitions you can look at [71,
Section 2.3]. Relations of these topologies are such that

(zar) ⪯ (et) ⪯ (fppf) ⪯ (fpqc)

Actually we can only work on Affk the category of affine schemes since every scheme can be covered
by affine schemes and the theory here is local8. If we do not remind specially Schk and Affk in this section
are always equipped with étale topology, though Zariski topology is enough for our purpose here.

6Limited by the space, we have to leave out many details. For basic algebraic geometry readers can consult with [8] or [3] if
necessary. For details of DM-stacks or algebraic stacks [5], [46, Section 2.2] and [47] contain much important information.

7fppf gets its name for “fidèlement plat et de présentation finie” and fpqc for “fidèlement plat et quasi-compact”.
8For example [71, Theorem 2.44] shows any scheme when viewed as a representable functor is a sheaf on the fpqc site Sch

fpqc
k .

Especially it will be a sheaf on the étale site.
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Remark 2.3.1 (Philosophy of étale topology). This remark is to make the abstract concept étale topology
more accessible. But limited by my level of knowledge, it’s based on my own understanding and with the
help of Chatgpt.

The word “étale” in French is often used to describe the flatness or peace of the sea. It appears many
times in French literature. We can give some examples in the following

• Le vent avait cessé, la mer était étale, comme si elle eût été recouverte d’une immense nappe de cristal
bleu, dont on n’eût laissé voir, çà et là, que quelques plis maladroits et presque invisibles. (Marcel
Proust, À la recherche du temps perdu)

• La mer était d’huile, étale comme une table; Le soleil sur l’eau faisait une tache d’or; Aucun souffle
n’agitait sa vaste étendue, Et la barque immobile, au loin, semblait perdue. (Victor-Marie Hugo, Les
Contemplations)

• La mer était étale, calme. Des tas de bois flottaient à côté de nous. La plage était déserte et le soleil
commençait à descendre. (Albert Camus, L’Étranger)

I think the following painting of a Russian marine painter Ivan Aivazovsky shows the meaning of the word
“étale” vividly. If you are interested in his other works, you can look at his wiki page.

Figure 1: The Black Sea at night

Since “étale” is often used to describe the sea not a river. Rivers always have branches but the sea
doesn’t have that. Therefore “étale” naturally means flat and unramified, in the language of geometry
which means an étale map will not change the shape of a geometric object locally in the sense that it induces
an isomorphism between tangent spaces. I hope discussions above can make étale topology more vividly.

In algebraic geometry étale topology is famous for its cohomology theory which can be used to solve
Weil’s conjecture.9 Its origin can be traced bake to the notion of isotrivial covers due to Serre from which Serre
successfully defines the first Weil cohomology group. As Weil has observed, for polynomial equations with
integer coefficients the complex topology of the set of complex solutions of these equations profoundly

9A strict theory can be found in [45].
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influence the number of solutions of these equations modulo a prime number. So here étale topology is to
serve just like the complex topology but it’s not dependent on the complex structure of a geometric object.
We give an example here to show advantages of complex topology and the necessity of étale maps which
is in [75, Section 2.2].

Consider a function C× → C× sending z to z2. For usual complex topology this function has the inverse
locally but not globally. Therefore the map

O×C → O
×
C , f 7→ f2

of sheaves is surjective where O×C is the sheaf of units of the sheaf OC of holomorphic functions. Similarly
the map

exp : OC → O×C , f 7→ exp(f)

of sheaves is surjective, whose kernel is the constant sheaf 2πiZ on C. For nice enough spaces the sheaf
cohomology of local systems is naturally isomorphic to the singular cohomology with coefficients of this
space [72, Theorem 11.13]. Therefore from the short exact sequence

0 −→ 2πiZ −→ OC
exp−−→ O×C −→ 0

the induced long exact sequence will show connections between singular cohomology and coherent coho-
mology.

However it’s not in the case of Zariski topology. In the Zariski topology the mapO×A1
C
→ O×A1

C
of sheaves

sending f to f2 is not surjective where A1
C = SpecC[X], since the element X ∈ O×A1

C
(D(X)) does not admit

square roots locally in the Zariski topology. But if we consider the integral extension

C[X,X−1]→ C[X,X−1, Y ]/(Y −X2) = A

which induces a surjective map SpecA → D(X) on topological spaces, X|SpecA will admit a square root
Y . Moreover if we consider the complex topology on C-points, C-points on SpecA are maximal ideals of
the form m = (Y − z, Y 2 − X) and their images in C-points of D(X) are just n = (X − z2). Therefore it
induces the map sending z to z2 which is a local isomorphism. Hence to obtain the result we want, we can
view such map SpecA→ D(X) as a generalized open cover. Actually for algebraic varieties over C, a map
between them is étale if and only if the induced map on C-points with the complex topology is locally an
open embedding, i.e. an étale map between topological spaces.

Now let us introduce the strict definition of étale morphisms.

Definition 2.3.2. (1). A closed immersion i : S0 → S of schemes is a first order thickening of S0, if the corre-
sponding ideal sheaf I = ker(OS → i∗OS0

) satisfies I2 = 0

(2). A morphism f : X → S of schemes is called formally smooth (resp. formally étale, resp. formally
unramified) if for all following commutative diagrams,

T0 X

T S

i fu

where i : T0 ↪→ T is a first order thickening of affine schemes, there is a lift u : T → X making the
diagram commutative (resp. there is exactly one such lift u, resp. there is at most one such u).

(3). A morphism f : X → S of schemes is called smooth (resp. étale, resp. unramified) if it’s locally of finite
presentation and formally smooth (resp. formally étale, resp. formally unramified).
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There are many equivalent definitions of these maps in any textbook about algebraic geometry such
as in [25] or [3]. But from this lifting definition, it’s clear to see étale maps are stable under compositions
and pushouts. From this definition it’s so clear to see étale=smooth+unramified. But there is another
characterization étale=flat+unramified [8, Corollary 8.5/18] which is not clear.

Remark 2.3.3. The definition of étale morphisms used by Bertrand Toën is a bit different from we state here
but they are equivalent. For Toën a map A → B of commutative algebras is étale if it’s locally of finite
presentation, B is flat over A via this map and B is flat as a B ⊗A B-module. Actually from [8, Theorem
8.4/3], a morphism X → S of schemes which is locally of finite presentation is unramified if and only
if the diagonal morphism ∆ : X → X ×S X is open. But moreover in algebraic geometry we have a
theorem which asserts a flat morphism that is locally of finite presentation is open [3, Tag01UA]. Then the
equivalence will be clear.

Definition 2.3.4. An algebraic space is a sheaf X on the site Schk such that

(1). for all schemesX , Y and any morphismsX → X , Y → X of sheaves, the sheafX×XY is representable
by a scheme;

(2). there exists a scheme X called an atlas and a surjective étale morphism X → X , which means for any
other map Y → X of sheaves where Y is a scheme the projection X ×X Y → Y is a suejective étale
morphism of schemes.

Actually from an atlas X → X we can characterize an algebraic space as a quotient of a scheme by an
étale equivalence [47, Section 5.2].

Remark 2.3.5. There is a trivial way to view a sheaf as a stack. We say a stack F is representable by an
algebraic space X (resp. scheme X) if there exists an algebraic space X (resp. scheme X) such that F is
isomorphic to the stack associated with X (resp. X).

A morphism F → G of stacks is representable by algebraic spaces (resp. schemes) if for any object X of
Schk and any morphismX → G of stacks, the pullbackX×GF is representable by an algebraic space (resp.
scheme).

We can do geometry on representable morphisms of stacks. We say a representable morphism F → G
has some geometric property such as surjective, flat, smooth, quasi-compact and so on if for any object X
of Schk, X ×G F → X has this property.

Definition 2.3.6 (Artin stack). A stack F on the site Schk is called an Artin stack or algebraic stack if

(1). the diagonal morphism ∆ : F → F ×F is representable by algebraic spaces and quasi-compact;

(2). there exists a scheme X called an atlas and a surjective smooth morphism X → X

[46, Proposition 2.44] shows there are other characterizations for the diagonal morphism ∆ : F → F×F
to be representable. It’s equivalent to that for any algebraic spaceX morphismsX → F are representable by
algebraic spaces or for any scheme X morphisms X → F are representable by algebraic spaces. Therefore
the second part in the definition makes sense.

Definition 2.3.7 (Deligne-Mumford stack). A stack F on the Schk is called a Deligne-Mumford stack or DM-
stack simply if

(1). the diagonal morphism ∆ : F → F ×F is representable by schemes, quasi-compact and separated;

(2). there exists a scheme X called an atlas and a surjective étale morphism X → X

Example 2.3.8. There are some famous examples of moduli stacks in algebraic geometry being DM-stacks
or algebraic stacks. The moduli stack Mg,n classifying smooth, connected and projective n-pointed curves
of genus g over the complex field C is a DM-stack and its compactification M g,n via stable reduction clas-
sifying n-pointed stable curves is a proper smooth DM-stack of dimension 3g − 3 + n if 2g − 2 + n > 0.
Moreover its coarse moduli space Mg,n is a projective algebraic space.
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On a projective schemeX , moduli stacks C ohX classifying coherentOX -modules and BunnX classifying
vector bundles of rank n over X are all algebraic stacks. If X is a smooth projective curve of genus g, then
BunnX will be smooth of dimension n2(g − 1). But for higher dimensions such as a smooth projective
surface, BunnX may not be smooth any more.

It’s not our purpose in this thesis to talk about these moduli stacks in detail which will make us go
too far away from the main line. On the other hand to understand these examples clearly one needs more
backgrounds on algebraic geometry than we assumed for reading this thesis. But if a reader is interested in
them, he or she can be benefited a lot from [5] or [46].

2.3.2 Higher Geometric Stacks

In the following we will consider the generalization of algebraicity for higher stacks so that we can do
geometry on them. Our main references here are [68] and [63, Chapter 3]. But in these two references
names for this concept are different. In the former it’s a special case of geometric stacks while in the latter it’s
called n-algebraic stacks. This generalization can be dated back to C. Simpson. For simplicity we work on
Affk of affine schemes with étale topology here.

From last two sections we have two ways to obtain the natural embedding Affk → Stk where Stk =
Ho(sPr(Affk)loc). The first one is to view an affine scheme as a sheaf [71, Theorem 2.44] and any sheaf is
actually a 0-truncated higher stack. The second one is to view Affk as a trivial model category where weak
equivalences are isomorphisms and all morphisms are fibrations and cofibrations. Then from Theorem
2.2.3 and étale descent (sheaf condition) the fully faithful functor exists. Objects in Stk isomorphic to some
SpecA are called affine schemes where A is any k-algebra.

Based on different notions of morphisms satisfying certain conditions, we will obtain different n-
geometric stacks. For example Artin stacks have an atlas of a smooth morphism. Then to obtain Artin
n-stacks the choice of morphisms here should be smooth morphisms. For DM-stacks the choince should be
étale morphisms. Moreover for schemes, the choice can be Zariski open immersions. Next we introduce
this idea precisely.

Definition 2.3.9. 10 Let P be a class of morphisms in Affτk. We say P is τ -local if it satisfies the following
properties.

(1). For any τ -covering {Ui → X|i ∈ I} in Affτk, the morphism Ui → X is in P.

(2). Morphisms in P are stable by compositions, equivalences and base changes.

(3). Let f : X → Y be a morphism in Affτk. If there exists a τ -covering {Ui → X|i ∈ I} such that the
composition Ui → Y lies in P for all i ∈ I , then f belongs to P.

(4). For any two objects X and Y in Affτk, the two morphisms X → X
∐
Y and Y → X

∐
Y are in P.

Via the embedding Affτk → St(Affk, τ), we can also view P as a class of morphisms in St(Affk, τ).

Definition 2.3.10 (Geometric stacks). 11 Let P be a class of morphisms in Affτk which is τ -local.

(1). A stack F is (−1)-geometric if it’s an affine scheme i.e. representable stack.

(2). A morphismF → G between stacks is (−1)-representable if for any affine schemeX and any morphism
X → G, the homotopy pullback F ×hG X is an affine scheme.

(3). A morphism F → G of stacks is in (−1)-P if it’s (−1)-representable and for any morphism X → G
whereX is an affine scheme, the induced morphism F×hGX → X is a P-morphism of affine schemes.

Now let n ≥ 0.
10 [68, Assumption 1.3.2.11]
11 [68, Definition 1.3.3.1]
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(1.) Let F be a stack. An n-atlas for F is a family of morphisms {Ui → F|i ∈ I} such that

(a). every Ui is an affine scheme;

(b). every morphism Ui → F is in (n− 1)-P;

(c). the total morphism
∐
i∈I Ui → F is an epimorphism.

(2). A stack F is n-geometric if it satisfies the following two conditions.

(a). The diagonal morphism F → F ×h F is (n− 1)-representable.

(b). The stack F admits an n-atlas.

(3). A morphism F → G of stacks is n-representable if for any morphism X → G where X is an affine
scheme, the homotopy pullback F ×hG X is n-geometric.

(4). A morphism F → G of stacks is in n-P if it’s n-representable and for any morphism X → G where X
is an affine scheme, there exists an n-atlas {Ui} for F ×hG X such that the composition Ui → X is in P
for every i.

Remark 2.3.11. In [63, Section 3.1] Toën first lets P be the class of Zariski open immersions and do the
gluing process in Stk to obtain the concept of schemes which can be regarded as a stack admitting a Zariski
0-atlas.12 Viewing schemes as 0-representable objects, he then continues the gluing process like that for
n-geometric stacks in Stk where the class of morphisms P changes to be smooth morphisms. In this way he
obtains the concept of n-algebraic stacks. If we do the gluing process in Stk directly with P being the property
of smoothness to obtain n-geometric stacks, the concept of 0-geometric stacks will be slightly stronger than
the classical algebraic stacks since it requires an affine diagonal. Moreover in this case, arbitrary schemes
are actually 1-geometric. There is an example in [50, Remark 1.27]. The scheme X glued by two copies of
A2 with intersection A2 \ 0 does not have an affine diagonal. So it’s only 1-geometric.

However, here we seldom distinguish the two definitions. Also we call n-geometric stacks as n-Artin
stacks. Many examples of n-algebraic stacks or n-geometric stacks can be found in [63, Section 3.2] or [62,
Section 3.2]. There is also another way using hypergroupoids to characterize geometric stacks due to Pridham
in [50] but we will not talk about it here.

Note that [68, Lemma 2.1.1.2] shows an n-geometric stack is (n+1)-truncated so that n-Artin stacks and
Artin n-stacks are a bit different. For an Artin n-stack we mean it’s n-truncated and m-geometric for some
m. This notion is more useful and it explains why we do not distinguish the two definitions for n-Artin
stacks, since we can suppose n is big enough.

The theory of geometric stacks talked here is covered by the derived case and we are now going to enter
the derived world.

2.4 Commutative Differential Graded Algebra

Actually the theory of geometric stacks above can be defined in a more general context. In the last section
we suppose the category Affk of affine schemes is equipped with the trivial model structure. Note that
any k-algebra is a commutative monoid in the category Modk of k-modules. All commutative monoids in
Modk form the category Algk of commutative k-algebras. Here all model structures are trivial. But this
motivates us to consider a non-trivial symmetric monoidal model category C and its commutative monoids.
The opposite of the category of commutative monoids in C is denoted by AffC .

The first question we meet is that AffC may not admit a model structure inheriting from C. For exam-
ple commutative monoids in the category Ch(k) of chain complexes are commutative differential graded
algebras (cdga). But it’s well known that if k is a field of characteristic char(k) = p > 0, then the category
of cdgas will not admit a model structure inheriting from Ch(k). Details can be found in [73, Section 5.1].
Therefore in this section we always suppose k is a field of characteristic 0 or a Q-algebra if not specified.

12For the derived case see Definition 2.5.8.
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Also in [73] David White provides some conditions for a monoidal model category C so that the category
Comm(C) of commutative monoids in it inherits a model structure from C, which means a map in Comm(C)
is a weak equivalence or a fibrations if it’s such one in C.

Of course to do homotopical algebraic geometry on (C,Comm(C)), C needs to satisfy some other as-
sumptions and details can be found in [68, Chapter 1.1]. Here we ignore these homotopical difficulties.
In [68, Definition 1.3.2.13] there is a definition of Homotopical Algebraic Geometry context (simply HAG context)
so that we can do homotopical algebraic geometry on it. Roughly speaking a HAG context (C,AffC , τ,P)
consists of a symmetric monoidal model category C, the opposite AffC of the category of commutative
monoids in C, a pre-topology τ on AffC and a τ -local class P of morphisms. Note that here the definition
for τ -local class is a bit different from Definition 2.3.9. In the fourth condition of Definition 2.3.9, the co-
productX

∐
Y should be changed to be the homotopy coproductX

∐L
Y and moreover P should be stable

under homotopy pullbacks.

2.4.1 Symmetric Monoidal Model Structure for Complexes

In this section we let C be Ch(R)≤0 the category of non-positive cochain complexes. Note that there is a
natural way to identify a chain complex and a cochain complex so that Ch(k)≤0 is equivalent to Ch(R)≥0.
For a cochain complex (C•, dnC•) we use C[n]• to denote its shifted complex such that C[n]m = Cn+m with
dmC[n]• = (−1)n · dn+m. For a complex if whether it’s a cochain complex or a chain complex is clear, we will
omit the symbol of •.

There is a projective model structure on Ch(R)≤0 with R being any commutative ring, where a map
f : A• → B• is a fibration if fn is surjective for all n < 0, a weak equivalence if f is a quasi-isomorphism
i.e. inducing isomorphisms on homology groups and a cofibration if every fn is injective for n ≤ 0 and
cokernels cokerfn are projective k-modules. A detailed proof can be found in [33, Lecture 01].

We can also regard a chain complex in Ch(R)≥0 as a simplicial R-module thanks to Dold-Kan correspon-
dence.

Theorem 2.4.1 (Quillen). 13 For any category C of ”algebras” (a category of models for Lawvere theory), the category
sC = C∆op

of simplicial algebras admits a simplicial model category structure such that

(1). weak equivalences are those maps which are weak equivalences on the underlying category of simplicial sets

(2). fibrations are those maps that are Kan fibrations on the underlying simplicial sets

(3). cofibrations are retracts of free maps.

Then sAb, sAlgR and sModR are all simplicial model categories. Dold-Kan correspondence is then a
Quillen equivalence

N : sAb Ch≥0(Z) : Γ

between simplicial abelian groups and non-negative chain complexes. Note that N and Γ can be right
Quillen and left Quillen respectively as well. The equivalence at the level of R-modules can be obtained via
the above one. Moreover Dold-Kan correspondence can induce a Quillen equivalence between simplicial
algebras and differential graded algebras [58, Theorem 1.1]. But as we have stated when k is a field of
characteristic not 0, there will not exist a model structure on cdgA≤0k inheriting from Ch(k)≤0. Hence the
equivalence between simplicial commutative rings and cdgas only exists when k is a Q-algebra. In this case
we can do homotopical algebraic geometry no matter using simplicial commutative rings or cdgas since
they are equivalent.

Now we begin with an introduction to the closed symmetric monoidal structure on Ch(R)• in detail since
the structure on Ch(R)≤0 inherits from it.

13 [52, II.4: Theorem 4, Remarks 1., Remarks 4.]
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There is a tensor product ⊗ : Ch(R)• × Ch(R)• → Ch(R)• on Ch(R)•. If V , W are two cochain
complexes, then we can describe V ⊗W as follows

(V ⊗W )n =
⊕
p+q=n

(V p ⊗RW q)

and the differential map is defined to be

d(v ⊗ w) = dv ⊗ w + (−1)deg(v)v ⊗ dw

Next we check this map is actually a differential. Suppose v ⊗ w ∈ V p ⊗W q ,

dd(v ⊗ w) = d
(
dv ⊗ w + (−1)pv ⊗ dw

)
= ddv ⊗ w + (−1)p+1dv ⊗ dw + (−1)p

(
dv ⊗ dw + (−1)pv ⊗ ddw

)
= 0

For two maps f : V → V ′, g : W → W ′, there will be a chain map f ⊗ g : V ⊗W → V ′ ⊗W ′ sending
v ⊗ w to f(v)⊗ g(w). For simplicity we also use the symbol R to denote the complex

· · · −→ 0 −→ R −→ 0 −→ · · ·

with all terms zero except the 0-th position which isR. Then there will exist a canonical identity V ⊗R = V .
Moreover there is a canonical isomorphism

V ⊗W ∼−→W ⊗ V, v ⊗ w 7→ (−1)deg(v)deg(w)w ⊗ v (Koszul sign)

We only need to check this map is a chain map which is obvious from the following diagram

v ⊗ w (−1)pqw ⊗ v

dv ⊗ w + (−1)pv ⊗ dw (−1)(p+1)qw ⊗ dv + (−1)p(−1)p(q+1)dw ⊗ v

d

∼

∼

d

This tensor product is associative. For (V ⊗W )⊗ U we have(
(V ⊗W )⊗ U

)n
= ⊕
p+q=n

(
(V ⊗W )⊗ Uq

)
= ⊕
p+q=n

(
⊕

s+t=p
(V s ⊗W t)⊗ Uq

)
= ⊕
s+t+q=n

V s ⊗W t ⊗ Uq

where the differential is such that

v ⊗ w ⊗ u 7→ d(v ⊗ w)⊗ u+ (−1)s+tv ⊗ w ⊗ du
= dv ⊗ w ⊗ u+ (−1)sv ⊗ dw ⊗ u+ (−1)s+tv ⊗ w ⊗ du

And for V ⊗ (W ⊗ U) its differential is such that

v ⊗ w ⊗ u 7→ dv ⊗ w ⊗ u+ (−1)sv ⊗ d(w ⊗ u)
= dv ⊗ w ⊗ u+ (−1)sv ⊗ dw ⊗ u+ (−1)sv ⊗ (−1)tw ⊗ du

Therefore (V ⊗W )⊗ U = V ⊗ (W ⊗ U).
Now let us construct the internal hom funcotr Hom•R(−,−). For any two cochain complexes V and W

define

Homn
R(V,W ) := {f : V →W |R-linear map of graded objects of degree n}

=
∏
p∈Z

HomR(V
p,W p+n)
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Note that for (fp : V p → W p+n)p∈Z they may not commutes with the differential. The differential on
Hom•(V,W ) is such that

Homn
R(V,W )→ Homn+1

R (V,W ), d(f) = dW ◦ f − (−1)deg(f)f ◦ dV

It’s actually a differential since

d(d(f)) = d
(
dW f − (−1)nfdV

)
= d(dW f)− (−1)nd(fdV )

= dW dW f − (−1)n+1dW fdV − (−1)ndW fdV + (−1)n(−1)n+1fdV dV

= 0

With this internal hom functor it’s clear to see a morphism f : V → W of graded objects is a cochain
map i.e. in Ch(R)• if and only if deg(f) = 0 and dW f = fdV which is equivalent to d(f) = 0 when viewing
f ∈ Hom0

R(V,W ). Next we prove there are natural isomorphisms

HomCh(R)•(U ⊗ V.W ) ∼= HomCh(R)•(U,Hom•R(V,W ))

Proof. Given a cochain map f : U ⊗ V → W sending up ⊗ vq to wn where n = p + q, then fixing up we
obtain a set of maps (fqu)q∈Z where fqu : V q → W p+q of degree p sending vq to wn the image of up ⊗ vq via
the cochain map f . Before checking it’s a cochain map U → Hom•R(V,W ), it’s obvious to see it’s functorial
on U and W .

Since f is a cochain map, f(d(up ⊗ vq)) = d(wn) which implies dw = fdu(v) + (−1)pfu(dv). Then
fdu(v) = dw− (−1)pfu(dv). To see the map U → Hom•R(V,W ) is a cochain map, d(fu) = dW fu− (−1)pfudV
sending vq to dw − (−1)pfu(dv) which is just fdu(v). Therefore fdu = d(fn).

On the other hand given a cochain map f : U → Hom•R(V,W ) sending up to (fu : V → W ) of degree
p, we can define a map U ⊗ V → W by sending up ⊗ vq to fu(vq). We check it’s a chain map. Since f is a
cochain map, d(fu) = dW fu − (−1)pfudV = fdu. The map we state above sends du ⊗ v + (−1)pu ⊗ dv to
fdu(v) + (−1)pfu(dv) which is just dW fu(v).

It’s clear to see the above two maps are inverse to each other.

On Ch(R)≤0 the internal hom for V and W will change to be the truncation τ≤0Hom•R(V,W ) whose
0-term is the kernel of the differential. With this construction Ch(R)≤0 will be a closed symmetric monoidal
model category [31, Proposition 4.2.13]. But here is another way to define the tensor product on Ch(R)≤0 as
follows,

A⊗B := N(Γ(A)⊗ Γ(B))

which is much different from the first one. But inheriting from sModR, Ch(R)≤0 will then be a monoidal
proper closed simplicial model category [34, Lemma 1.5].

2.4.2 Model Structure for CDGAs

With the standard tensor product the monoid in Ch(R)≤0 will be a differential graded algebra (dga) i.e. a
cochain comlex A• with the unit 1 ∈ A0 and multiplication An × Am → An+m satisfying d(ab) = (da)b +
(−1)|a|a(db) where |a| is the degree of a. We can also write it as A• = ⊕n≤0An. Moreover a commutative
differential graded algebra (cdga) is a graded commutative dga in other words it satisfies ab = (−1)|a||b|ba.
The category of commutative monoids in Ch(R)≤0 is denoted by cdgA≤0R .

Suppose AlgR is the category of commutative R-algebras where R is a commutative ring. Then there
is a forgetful functor U : AlgR → ModR whose left adjoint functor is the symmetric algebra functor
Sym•(−) : ModR → AlgR. See Definition 3.1.1 for the definition of symmetric algebras. Then there is an
adjoint pair

Sym•(−) : ModR AlgR : U

There exists a similar adjoint pair between Ch(R)≤0 and cdgA≤0R which is a bit more complicated. We
first generalize the definition of symmetric algebras and exterior algebras for an R-module M in Definition
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3.1.1 to the case of a graded R-module V = ⊕i∈ZV i. The tensor algebra for V does not change which is
just T (V ) = ⊕n≥0V ⊗n. But for graded-symmetric algebra S(V ) the two sided ideal is generated by elements
a⊗b−(−1)|a||b|b⊗a and a⊗a if deg(a) is odd while the two sided ideal for exterior algebra

∧
(V ) is generated

by a ⊗ b + (−1)|a||b|b ⊗ a and a ⊗ a if deg(a) is even. Sn(V ) and
∧n

(V ) are the image of Tn(V ) = V ⊗n in
S(V ) and

∧
(V ) respectively. This definition comes from [19, Section A2.3]. In other context the graded-

symmetric algebra is also called the free graded commutative algebra [30, Section 2.2]. If here R is a Q-algebra,
then the condition for a⊗ a can be neglected which is just the definition in [12, Section 1.1].

Important: I’m not really sure whether the definition for the exterior algebra of a graded R-module
V where R is not a Q-algebra is correct or not. In [19] there is only the definition for S(V ) and in [12] it’s
defined on a field of characteristic 0. And I do not find any reference on the case of positive characteristic.
But fortunately we actually do not need the definition of the exterior algebra of a graded vector space and
we will not use this concept. We will always use the symbol

∧
to mean the usual exterior algebra defined in

Definition 3.1.1. Moreover readers should be careful that we use different symbols Sym and S to distinguish
the symmetric algebra for a usual module and a graded module. In the following we will deal with these
things on a field k of characteristic 0 for simplicity. And readers can find that when we use the symbol k
we always mean it has characteristic 0 but when we use R it just denotes an arbitrary commutative ring.

Remark 2.4.2. If a graded k-vector spaces V is concentrated in even (resp. odd) degrees, then we will
have S(V ) = Sym(V ) (resp. S(V ) =

∧
(V ) ). From this if we let V odd = ⊕iV 2i+1 and V ev = ⊕iV 2i, then

S(V ) = Sym(V ev)⊗
∧
(V odd). With the notion of free graded commutative algebras there is also an adjoint

pair between the category of graded k-vector spaces and the category of graded commutative k-algebras.
Moreover this adjoint pair can be defined between cochain complexes and commutative differential graded
algebras (cdgas)

S : Ch(k)≤0 cdgA≤0k : U

where for a cochain complex V , in degree n the cdga S(V ) has those elements x1 ⊗ · · · ⊗ xm satisfying∑m
i=1 deg(xi) = n.

Theorem 2.4.3. If k is a field of characteristic 0, then cdgA≤0k admits a model structure such that

• weak equivalences are quasi-isomorphisms;

• fibrations are those maps inducing surjections for n < 0;

• cofibrations are those maps having the left lifting property with respect to all trivial fibrations.

Moreover this model structure is proper.

Sketch of the proof. For n ≤ 0 we define cochain complexes

D(n) := · · · −→ 0 −→ k −→ k −→ 0 −→ · · ·

centered at [n− 1, n] and
S(n) := · · · −→ 0 −→ k −→ 0 −→ · · ·

centered at n. Next let I = {0 → S(0), in : S(n) → D(n)|n ≤ 0} and J = {jn : 0 → D(n)|n ≤ −1}.
According to [33, Lecture 01], I and J will generate cofibrations and trivial cofibrations respectively via
the small object argument (Theorem A.1.11) in Ch(k)≤0. Similarly here S(I) and S(J) will play the same
role. They generate the model structure on cdgA≤0k and the above adjoint pair will then be a Quillen pair.
Here we need Theorem A.4.4 and to prove it satisfies the second condition you will need the assumption of
characteristic 0. Moreover cofibrations will be retracts of semi-free extensions which are f : A→ B such that
B = A[{xi}] is a polynomial extension in an arbitrary number of variables of non-positive degree.

For the left properness you can find a proof in [44, Corollary 3.4]. The right properness is more clear
since every object in cdgA≤0k is fibrant which is dual to [14, Proposition 2.3.27].
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Remark 2.4.4. In this remark we explain why we need to suppose k is of characteristic 0. The main idea
follows [73, Section 5.1]. Assume char(k) = p > 0. We know if cdgA≤0k admits the model structure in the
theorem above, then the adjoint pair (S, U) will be a Quillen pair and especially S will preserve cofibrations
and trivial cofibrations. Notice that in Ch(k)≤0, D(n) is a cofibrant object with trivial homology groups.
This means S(jn) will be quasi-isomorphisms and S(D(n)) will have the same homology groups as k when
viewing it as a complex centered at 0. Now let us consider S(D(−1)) = Sym(k) ⊗

∧
(k). Let x denote the

unit element 1 of k in Sym(k) at degree −2 whose differential dx will be the unit element 1 of k in
∧
(k) at

degree −1. Then xp of degree −2p formally exits with differential d(xp) = pxp−1dx = 0 by induction. Since
S(D(−1)) is quasi-isomorphic to k, there will exit and element y in S(D(−1)) of degree −2p − 1 satisfying
d(y) = xp. For the reason of degree y must have the factor of dx but then its differential dy will be zero or
have some factor dx. All in all dy can not be xp.

This statement can to applied to any D(n) when n is odd. Just note that our notation D(n) here is a bit
different from other references where n should be supposed to be even.

Remark 2.4.5. There are model structures on cdgAk and cdgA≥0k as well. For cdgAk,

• weak equivalences are quasi-isomorphisms;

• fibrations are those maps inducing surjection for all n ∈ Z;

• cofibrations are those maps having the LLP wrt all trivial fibrations.

As for cdgA≥0k ,

• weak equivalences are quasi-isomorphisms;

• fibrations are those maps inducing surjection for n ≥ 0;

• cofibrations are those maps having the LLP wrt all trivial fibrations.

Proofs for them are all similar. You can find them in [9, §4.] and [30, Chapter 4].

The theory of commutative algebras is actually contained in the homotopy theory of cdgas. For a com-
mutative algebraB we can view it as a cdga centered at 0 which induces a functor Algk → cdgA≤0k sending
isomorphisms to quasi-isomorphisms. On the other hand for any cdga A we can associate it with the com-
mutative algebra H0A. This functor H0 : cdgA≤0k → Algk sends quasi-isomorphisms to isomorphisms.
Therefore the two functors can defined on homotopy categories. Moreover they form an adjoint pair

HomAlgk
(H0(A), B) ∼= Hom

cdgA
≤0
k
(A,B)

Proposition 2.4.6. The induced functor Algk → Ho(cdgA≤0k ) is fully faithful.

Proof. Suppose A ∈ cdgA≤0k , B ∈ Algk and QA is a cofibrant replacement in cdgA≤0k . Then

Hom
Ho(cdgA

≤0
k )

(A,B) = Hom
Ho(cdgA

≤0
k )

(QA,B)

Since any object in cdgA≤0k is fibrant, from Proposition A.2.18 we see

Hom
Ho(cdgA

≤0
k )

(QA,B) = [QA,B] = Hom
cdgA

≤0
k
(QA,B)/ ∼

Notice that the diagonal map B → B ×B is a fibration since there is nothing on n < 0. Therefore it’s a path
object for B (Definition A.2.5). Then from the definition of right homotopy (Definition A.2.6), we have

Hom
cdgA

≤0
k
(QA,B)/ ∼= Hom

cdgA
≤0
k
(QA,B) = HomAlgk

(H0(QA), B) = HomAlgk
(QA,B)

The fully faithfulness is clear if we suppose A is a commutative algebra.
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In the following we continue to explore structures on cdgA≤0k or cdgAk further.

Definition 2.4.7. For any non-negative integer n, the algebra of polynomial differential forms Ω•n = Ω•(∆n) on
the algebraic n-simplex is the cdga

Ω•n := k[t0, · · · , tn, dt0, · · · , dtn]/(
∑

ti − 1,
∑

dti)

where ti’s are at degree 0, dti’s are at degree 1 and the product is the wedge product.

Remark 2.4.8. Ω0
n = k[t0, · · · , tn]/(

∑
ti − 1) ⊆ An+1

k is actually the standard n-simplex in the affine space
An+1
k of dimension n+ 1 and Ω•0 = k[t]/(t− 1, dt) = k will be the unit cdga. For q > p we will have Ωqp = 0.

Given a map f : [n]→ [m] in ∆, it will induce a map between cdgas

Ω•(f) : Ω•m → Ω•n, ti 7→
∑
f(j)=i

tj

Therefore we can regard Ω• as a simplicial object in cdgAk. Next from the Kan extension [14, Theorem
1.1.10], this functor can be extended to be defined on sSet.

Ω• : sSet→ (cdgAk)
op, X 7→ colim

∆n→X
Ω•n

which admits the right adjoint functor.

Definition 2.4.9. Fixing any non-negative integer q, Ωq will be a simplicial set sending any [p] to Ωqp. The
piecewise linear de Rham funcor or simply PL de Rham functor is defined to be

ΩPLdR : sSet→ (cdgA≥0k )op, X 7→ Hom•sSet(X,Ω)

where Homq
sSet(X,Ω) = HomsSet(X,Ω

q) and the differential sends f : X → Ωq to dΩ ◦ f .

Proposition 2.4.10. The PL de Rham functor ΩPLdR admits the right Quillen adjoint functor

F : (cdgA≥0k )op → sSet, C 7→
(
[p] 7→ Hom

cdgA
≥0
k
(C,Ω•p)

)
Proof. See [30, Theorem 6.2] or [9, §8.].

Since Ω• and Ω•PLdR have the same right adjoint functor, they are isomorphic to each other. This adjunc-
tion is useful in rational homotopy theory.

Remark 2.4.11. In this remark we describe the simplicial structure on cdgAk. For any two cdgas A and B
we define the internal simplicial set Map(A,B) ∈ sSet such that

Map(A,B)n := HomcdgAk
(A,Ω•n ⊗k B)

Clearly Map(A,B)0 = HomcdgAk
(A,B). The composition is defined via the following natural isomorphism

[9, 5.1]
HomcdgA(A,Ω•n ⊗k B) ∼= HomΩ•n

(Ω•n ⊗k A,Ω•n ⊗k B)

where the right side means maps preserving the left dg Ω•n-module structure. This generalizes the classi-
cal result for tensor products of modules. [9, Propsition 5.3] shows this nearly defines a simplicial model
structure on cdgAk. As for the internal hom functor for cdgA≤0k , we can only consider its truncation τ≤0

of Ω•n ⊗k B which means

Map
cdgA

≤0
k
(A,B)n = Hom

cdgA
≤0
k
(A, τ≤0(Ω•n ⊗k B))

This nearly simplicial model structure on cdgAk actually defines a correct derived internal hom functor
RMap(A,B) = Map(QA,Ω•n ⊗k B) in the sense that the simplicial cdga Ω• ⊗k B is a simplicial resolution
of B (Definition A.4.19) so that we can obtain a good simplicial localization theory [18]. For the proof that
B → Ω• ⊗k B is a Reedy fibrant replacement in scdgAk you can consult with [2, Proposition 4.5].
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2.4.3 Cotangent Complexes

If we want to do algebra or geometry on cdgas, we need to introduce the concept of cotangent complex first
which in Toën’s opinion is the true origin of derived algebraic geometry [64]. We first introduce the classical
one and then talk about a version for cdgas.

In a category C, an abelian object A is an object in C satisfying categorical axioms similar to abelian
groups which is equivalent to that the representable functor HomC(−, A) : Cop → Set factors through
Ab the category of abelian groups. We use Cab to denote the full subcategory of C consisting of abelian
objects. For example sSetab = sAb the category of simpliical abelian groups. If both C and Cab have model
structures and the abelianization functor C → Cab is left Quillen, then we will be interested in its left derived
functor.

Next we fix a k-algebraA and consider abelian objects in Algk/A = Algk ↓ A the category of k-algebras
over A.

Definition 2.4.12. LetM be anA-module. Then the trivial extension ofA alongM is defined to be a k-algebra
A⊕M such that

(a,m) · (b, n) = (ab, an+ bm)

We denote this k-algebra by A ⋉M . With the projection pr1 : A ⋊M → A, we can view it as a k-algebra
over A.

Proposition 2.4.13. (Algk/A)ab is equivalent to the category of all trivial extensions of A.

Proof. See [51, Proposition 1.4] or [15, Proposition 1.15].

And therefore (Algk/A)ab will be equivalent to ModA the category of A-modules. Next let f : B →
A⋉M be a map between k-algebras overA. Suppose f(b) = (f1(b), f2(b)). Since f is overA, f1 is determined
by the structure of B over A which means a map B → A of k-algebras. Therefore f is then determined
by the map f2. Since f should be a map of algebras, f(bb′) = f(b)f(b′) and this is equivalent to that
f2(bb

′) = bf2(b
′) + b′f2(b) where the multiplication is via the map B → A. This then means f2 is k-linear

derivation B →M and we obtain isomorphisms

HomAlgk/A
(B,A⋉M) ∼= Derk(B,M) ∼= HomB(Ω

1
B/k,M) ∼= HomA(Ω

1
B/k ⊗B A,M)

which means there exists an adjoint pair

Ω1
−/k ⊗− A : Algk/A ModA : A⋉−

What we talked above can be extended to the simplicial case obviously and we have an adjoint pair

Ω1
−/k ⊗− A : sAlgk/A sModA : A⋉−

where the two functors are applied objectwise and A is a simplicial k-algebra.
From Theorem 2.4.1 sAb, sAlgk and sModk are all simplicial model categories. Since on underlying

simplicial sets A⋉− is just A×−, the functor A⋊−will preserve Kan fibrations and trivial Kan fibrations.
Thus the adjoint pair above is a Quillen pair and we obtain derived functors

L(Ω1
−/k ⊗− A) : Ho(sAlgk/A) Ho(sModA) : R(A⋉−)

Moreover L(Ω1
−/k ⊗− A)(B) = Ω1

QB/k ⊗QB A where QB is a cofibrant replacement of B in sAlgk/.A which
is actually the usual cofibrant replacement in sAlgk.
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Definition 2.4.14. For a commutative k-algebra A, the cotangent complex LA/k is defined to be L(Ω1
−/k ⊗−

A)(A) which is Ω1
QA/k ⊗QA A in Ho(sModA). And the André-Quillen homology of A is defined to be

Dn(A/k) = πnLA/k the homotopy group of cotangent complex.
For any A-module M we define André-Quillen homology and André-Quillen cohomology with coeffi-

cient M as

Dn(A/k,M) := Hn(N(LA/k)⊗AM) and Dn(A/k;M) := Hn(HomA(N(LA/k),M))

respectively.

Actually via Dold-Kan correspondence we can change every simplicial A-module into a chain complex
of A-modules and compute its homology groups which will be isomorphic to homotopy groups of the
original simplicial module. Classical theory for cotangent complex via free simplicial resolution computes
that D0(A/k) = Ω1

A/k. Here we only talk about the affine case. To obtain the definition of cotangent
complex for schemes, these local (affine) constructions should be glued together by the use of standard
simplicial resolution. Details can be found in [32]. Finally we have the following theorem to characterize
smooth morphisms and étale morphisms.

Theorem 2.4.15. Suppose the map f : X → Y of schemes is locally of finite presentation.

(1). f is smooth if and only if the map LX/Y → Ω1
X/Y is a quasi-isomorphism and Ω1

X/Y is locally free of finite
rank where we also view Ω1

X/Y as a complex centered at 0.

(2). f is étale if and only if LX/Y is isomorphic to 0 in the derived category.

Proof. A statement for affine case can be found in [53, Theoren 5.4 and Theorem 5.5]. And proofs can be
found in [51, Proposition 5.3] or [32, Proposition 3.1.1 and Proposition 3.1.2].

Arguments above can be applied without change to the case of cdgas thanks to Dold-Kan correspon-
dence. For a cdga A the category of (unbounded) differential graded A-modules is denoted by dgModA
where the multiplication and differential should satisfy d(ax) = (da)x + (−1)|a|adx. And the category of
(unbounded) differential graded A-algebras is denoted by cdgAA which is equivalent to A/cdgAk = A ↓
cdgAk. Let M be an object in dgModA we define a new cdga the trivial extension A ⋉ M such that its
underlying cochain complex is A ⊕M and the multiplication is induced by the usual trivial extension in
Definition 2.4.12. These definitions or constructions are also valid for cdgA≤0k . Then we have a Quillen pair

Ω1
−/k ⊗− A : cdgA≤0k /A dgMod≤0A : A⋉−

The cotangent complex for a cdga A is thus defined to be

LA/k := L(Ω1
−/k ⊗− A)(A) = Ω1

QA/k ⊗QA A

There is a more general case where we consider cdgas over a cdga. Suppose B → A is a map of cdgas.
Then A is an object in cdgA≤0B . We consider the cofibrant replacement QA of A in cdgA≤0B which means
the following factorization

B QA A
∼

where B → QA is a cofibration. Then the relative cotangent complex is defined to be LA/B := Ω1
QA/B ⊗QA A

which is an object in Ho(dgMod≤0A ).
Given a map of cdgas R→ A in cdgA≤0k , Ω1

A/R is the module of Kähler differentials in the usual sense

but it can be an object in dgMod≤0A . Note that Ω1
A/R is isomorphic to I/I2 where I = ker(A ⊗R A → A).

From this point the differential graded structure is clear. This construction has a universal property like the
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classical one but here for an R-derivation d : A → M from A to an object M in dgModA, it should satisfy
the graded Leibniz rule

d(a1 · a2) = d(a1) · a2 + (−1)|a1|a1 · d(a2)

Then we have a natual isomorphism

DerR(A,M) ∼= HomA(Ω
1
A/R,M)

2.5 Derived Geometric Stacks

In this section we talk about the geometry on cdgA≤0k and we use the symbol dAffk to denote the opposite
category of cdgA≤0k . For any object A of cdgA≤0k , SpecA will denote the same object in dAffk which is
called affine derived scheme. Now we let C = dAffk and apply methods in the first two sections to C. Objects
in the essential image of Ho(dAff∧k ) in Ho(sPr(dAffk)) are called derived prestacks. Our first task here will
be to equip dAffk with a model pretopology

Definition 2.5.1. 14 A morphism f : A→ B in cdgA≤0k is flat (resp. smooth, étale, a Zariski opem immersion) if

(1). for any n < 0 the natural morphism

Hn(A)⊗H0(A) H
0(B) −→ Hn(B)

is an isomorphism;

(2). the induced morphism of affine schemes SpecH0(B) → SpecH0(A) is flat (resp. smooth, étale, a
Zariski open immersion).

Fact 2.5.2. For an object A of cdgA≤0k , Hn(A) will naturally have a H0(A)-module structure. Suppose
a+ dA−1 and x+ dAn−1 are elements of H0(A) and Hn(A) respectively. Then (a+ dA−1) · (x+ dAn−1) :=
ax ∈ Hn(A). This multiplication is well defined since for any b ∈ A−1 and y ∈ An−1, xdb and ady will be a
coboundaries. This is clear when we notice d(xb) = (−1)|x|xdb and d(ay) = ady.

Remark 2.5.3. In [68] or [49] there are very abstract definitions or characterizations for maps we defined
above and many of them are dependent on cotangent complexes [68, Definition 1.2.6.1]. Note that in [68] a
morphism is a Zariski open immersion (resp. smooth, étale) if it’s a formal Zariski open immersion (resp.
formally smooth, formally étale) and of finite presentation. Moreover for a map of commutative algebras
if we view it as a morphism between cdgas, it will be stronger to say it’s finitely presented as cdgas than
as a map of commutative algebras. However our definitions here will be equivalent to those abstract ones
which is shown in [68, Proposition 2.2.2.5 and Theorem 2.2.2.6].

These equivalences are very interesting since they provide us a homotopical perspective to consider
geometric morphisms in algebraic geometry. For example they tell us that for a finitely presented map
A → B of commutative algebras, SpecB → SpecA is a Zariski open immersion if and only if the induced
restriction functor D≤0(B) → D≤0(A) between derived categories is fully faithful. A direct proof for this
statement can be found in the post “A derived characterization of open immersions” written by Akhil
Mathew.

Definition 2.5.4. A family of morphisms {SpecAi → SpecA|i ∈ I} in dAffk is a Zariski covering (resp. étale
covering, flat covering) if and only if every map A → Ai is a Zariski open immersion (resp. étale, flat) and
there exists a finite subset J ⊆ I such that∐

j∈J
SpecH0(Ai)→ SpecH0(A)

is a Zariski (resp. étale, flat) covering in the usual sense.

14 [62, Definition 4.1]
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This definition will define Zariski (resp. étale, fppf) model pretopology. Although here Zariski topology
is enough for our purpose, we insist using étale topology. In the following if we do not remind specially
dAffk is always equipped with étale model pretopology.

Remark 2.5.5. In this remark we check the notion of étale covering actually defines étale model pretopology
in the sense of Definition 2.2.5. The “stability” condition is trivially satisfied since for any isomorphism in
Ho(cdgA≤0k ) we can find a quasi-isomorphism in its preimage in cdgA≤0k . The definition for étale covering
is on the homology level and the “stability” condition follows from that any isomophism of commutative
algebras is a usual étale covering.

To prove the “composition” condition we also first lift maps in Ho(cdgA≤0k ) to cdgA≤0k . Suppose
{SpecAi → SpecA|i ∈ I} is a covering and for any i ∈ I , {SpecAij → SpecAi|j ∈ Ji} is a covering. Then for
n < 0,

Hn(Aij) ∼= Hn(Ai)⊗H0(Ai) H
0(Aij)

∼= Hn(A)⊗H0(A) H
0(Ai)⊗H0(Ai) H

0(Aij)

∼= Hn(A)⊗H0(A) H
0(Aij)

and at the homology level of degree 0 we will obtain the usual étale covering from.
To prove the “homotopy base change” condition, we suppose {SpecAi → SpecA|i ∈ I} is a covering

and SpecB → SpecA is a map in cdgA≤0k . We know cdgA≤0k is proper. Therefore from Theorem A.4.10,
to compute the corresponding homotopy pullback we only need to compute the pullback of SpecC →
SpecA ← SpecAi where A → B factors as A → C → B the composition of a trivial fibration with a
cofibration. Note that

SpecC ×SpecA SpecAi = Spec(C ⊗A Ai)

A direct computation implies
H0(C ⊗A Ai) ∼= H0(C)⊗H0(A) H

0(Ai)

Then it’s clear
Hn(C)⊗H0(C) H

0(C ⊗A Ai) ∼= Hn(C)⊗H0(A) H
0(Ai)

Next we need to compute Hn(C ⊗A Ai). Classical Künneth spectral sequence [57, Theorem 10.90] tells
us that ifA is just a commutative algebraR, one ofC andAi are flat overR, then there is a spectral sequence
such that

Ep,q2 =
⊕

s+t=q Tor
R
p (H

s(C), Ht(Ai)) Hp+q(C ⊗R Ai)
p

There is a generalization for cdgas. In [39, Construction 7.2.1.18], Lurie shows there is a spectral sequence
such that

Ep,q2 = TorH
∗A

p (H∗(C), H∗(Ai))q Hp+q(C ⊗A Ai)
p

where H∗A is a graded commutative algebra while H∗C and H∗Ai are graded H∗A-modules. Since we
suppose Ai is étale over A, H0Ai will be étale over H0A in the usual sense and especially it’s flat. And
moreover we have H∗Ai ∼= H∗A ⊗H0A H

0Ai. H∗Ai is then étale especially flat over H∗A. Therefore the
spectral sequence above gives

TorH
∗A

0 (H∗(C), H∗(Ai)) = H∗C ⊗H∗A H∗Ai = H∗C ⊗H0A H
0Ai ∼= H∗(C ⊗A Ai)

The statement above is Proposition 7.2.2.13 in [39].
Finally since usual étale coverings are stable under pullbacks, we complete the proof.

Remark 2.5.6. Applying techniques in previous sections to dAffk with étale model pretopology, we obtain
the model category dAff∼k of derived stacks whose homotopy theory with respect to étale π∗-equivalences
is denoted by dStk.
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From Theorem 2.2.3 via the model Yoneda embedding we can view an affine derived scheme SpecA as
a derived prestack. Here we let

Spec = h : dAffk → sPr(dAffk), SpecA 7→ HomdAffk
(Γ(−),SpecA)

where the simplicial resolution functor Γ has a concrete description. According to Remark 2.4.11 we can let

Γ(B) = τ≤0(Ω• ⊗k B)

Then SpecA means it’s an object in dAffk while SpecA means it’s in dAff∧k and RSpecA is in Ho(dAff∧k ).
Moreover [68, Lemma 1.3.2.5] shows a model pretopology τ satisfying [68, Assumption 1.3.2.2] is subcanon-
ical in the sense that every representable object is a stack. Therefore the derived prestack RSpecA is actually
a derived stack. For any object in dStk isomorphic to some affine derived scheme, we also call it an affine
derived scheme.

Why we need derived algebraic geometry? Or compared with classical algebraic geometry what’s the
advantage of derived algebraic geometry? Actually the most important one I think is to help us deal with
some singular situations such as some bad intersections. We give some basic examples here.

Example 2.5.7. This example comes from [11, Section 1.1].
At first we need to know which intersections are good and which ones are bad. For good intersections

we mean two smooth subvarieties meet transversely inside an ambient smooth variety which means tangent
spaces at the intersection point of the two subvarieties generate the whole tangent space of the ambient
space. In this case this intersection is itself a smooth subvariety whose codimension is the sum of the
codimensions of the two subvarieties and satisfies some good properties. This statement is true no matter
in differential geometry or algebraic geometry. It’s well known that the category of smooth manifolds is not
really good since the pullback may not exist. But in the case where two maps are transverse, we can equip
the pullback at the set level with a smooth structure as a smooth submanifold.

Next we talk about some easy examples.

The above intersection is given by {x = 0} ∩ {y = 0} ⊆ A2
k which is algebraically defined as

k[x, y]/(x)⊗k[x,y] k[x, y]/(y) = k[x, y]/(x, y) = k

with (Krull) dimension 0. And its codimension is 2 the sum of that of two affine lines.
A bad one is given by {y = x2} ∩ {y = 0} ⊆ A2

k.

Algebraically it’s

k[x, y]/(y − x2)⊗k[x,y] k[x, y]/(y) = k[x, y]/(y − x2, y) = k[x]/(x2)

Clearly Speck[x]/(x2) is of (Krull) dimension 0 but is not smooth at the original point and this intersection
multiplicity is 2 since as a k-vector space it’s of dimension 2. In general the intersection multiplicity at an
intersection point is used to express how many times the two subvarieties meet at this point. It will be
one if the two subvarieties are smooth and intersect transversely [20, Lemma 1.26] but other conditions

36



may be complicated. There is actually a formula due to Serre to compute intersection multiplicities in such
complicated cases [20, Theorem 2.7].

A much worse example is about self-intersection. For example {y = 0} ∩ {y = 0} = {y = 0} is given
by k[x, y]/(y) = k[x] of (Krull) dimension 1 instead of 0. Here how can derived algebraic geometry help
us? In derived algebraic geonmetry intersections are computed as homotopy pullbacks. Therefore we need
to compute k[x] ⊗L

k[x,y] k[x]. Since cdgA≤0k is proper, we only need to factor one side k[x, y] → k[x] as a
composition of a trivial fibration with a cofibration.

Let k̃[x] = k[x, y, ξ] where ξ is a free generator in the degree −1 and x, y are in the degree 0. For
differential dξ = y and dx = dy = 0. Clearly k[x, y] → k̃[x] is semi-free extension hence a cofibration in
cdgA≤0k . Next we prove k̃[x]→ k[x] sending ξ, y to 0 is a trivial fibration. Actually we only need to prove
cohomology groups of k̃[x] for n < −1 are all trivial. An element in k̃[x]

n
has the form f(x, y)ξn where we

suppose n > 1 and compute the −n cohomology group. Since df(x, y)ξn = nf(x, y)yξn−1, df(x, y)ξn = 0 if
and only if f(x, y) = 0. Then it’s clear the cohomology group is trivial. Therefore the derived intersection
is computed as k̃[x]⊗k[x,y] k[x] where

(k̃[x]⊗k[x,y] k[x])−n = k[x, y] · ξn ⊗k[x,y] k[x] = k[x] · ξn

Then k̃[x] ⊗k[x,y] k[x] = k[x, ξ] where ξ is at degree −1 and x is at degree 0 with dξ = 0, dx = 0. Here the
virtual dimension is computed as the difference between the number of even and odd generators which is
just 0. And in this example the classical intersection k[x] is just the truncation of the derived one.

For those good intersections we can obtain the same result. We compute the derived intersection of the
first example which will be

k[x]⊗L
k[x,y] k[y] = k̃[x]⊗k[x,y] k[y] = k[y, ξ]

where dξ = y. This result is quasi-isomorphic to k.
And the derived intersection of the second example is given by

k[x]⊗L
k[x,y] k[x, y]/(y − x

2) = k[x, ξ]

where dξ = x2. Notice that H0(k[x, ξ]) = k[x]/(x2) is just the non-derived intersection.

Examples above show that classical constructions in algebraic geometry are truncated ones in the de-
rived world. No matter how singular this construction is, in the derived world it seems to be “smooth”.
This is just the famous hidden smoothness principle. There is a more complicated example in [66, Section
1.2]. In Example 2.3.8 we have said if X is a smooth projective curve of genus g, then the moduli stack
BunnX is smooth of dimension n2(g − 1). But if X is a smooth projective surface, then this algebraic stack
will not be smooth. [66, Section 5.2] shows how we can obtain the derived stack RBunnX which is smooth
in the derived world and the Euler character of its tangent space which is not just a space but a complex, is
locally constant.

Now let us consider how can we obtain the concept of derived scheme from affine derived schemes.
Schemes are obtained by the gluing of affine schemes i.e. they admit a Zariski atlas. This statement has a
version for functors which says any Zariski sheaf Schopk → Set admitting an open covering by representable
subfunctors is itself representable [60, Proposition 2.16]. Our construction here is similar to the classical one.

Definition 2.5.8. 15

(1). Let RSpecA be an affine derived scheme and F a derived stack. A morphism i : F → RSpecA is a
Zariski open immersion if it satisfies the following conditions.

(a). The map i is a monomorphism.

15 [49, Definition 4.2] or [63, Definition 3.1.1]
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(b). There is a family {RSpecAi → F} of morphisms in dStk such that the induced map∐
i

RSpecAi → F

is an epimorphism and each composition

RSpecAi → F → RSpecA

is a Zariski open immersion of cdgas.

(2). A morphism F → G of derived stacks is a Zariski open immersion if for any morphism RSpecA → G,
the induce morphism

F ×hG RSpecA→ RSpecA

is a Zariski open immersion in the above sense.

(3). A derived stack F is a derived scheme if there exists a family {RSpecAi → F|i ∈ I} of Zariski open
immersions such that the induced map ∐

i

RSpecAi → F

is an epimorphism and such a family is called a Zariski atlas for F .

For derived algebraic stacks or derived Artin stacks, we view derived schemes as derived 0-algebraic stacks
and do induction based on Definition 2.3.10 where the class P is chosen to be smooth morphisms. And then
we obtain the notion of derived n-algebraic stacks. Similarly we have the concept of derived Deligne-Mumford
stacks as well where P is chosen to be étale maps. Note that it’s a bit different from derived algebraic n-
stacks as we have talked before. Also note that in [68] the notion of derived geometric stacks is a bit different
from derived Artin stacks we said here. But we do not distinguish them. For details you can see Remark
2.3.11.

Like classical Artin stacks there is a criterion for derived Artin stacks named Artin-Lurie representability
theorem which originally appears in Lurie’s phd thesis [37, Theorem 7.1.6]. You can also find some details
in [49, Section 5] or [68, Appendix C].

Remark 2.5.9. There is a definition for dg-schemes in [13] which says a dg-scheme consists of a pair X =
(X0,O•X) where X0 is an ordinary scheme and O•X is a sheaf of cdgas on X0 such that O0

X = OX0 and
every OiX is quasi-coherent over OX0 . Here we have H0(O•X) a quasi-coherent sheaf of algebras and we
can obtain a truncation scheme π0(X) := SpecX0H0(O•X) [8, Section 7.1, p288] which is actually a closed
subscheme of X0.

A morphism f : X → Y between dg-schemes is a quasi-isormophism if and only if the induced map
π0(f) : π0(X)→ π0(Y ) is an isomorphism of schemes and Hn(f) : Hn(O•X)→ Hn(O•Y ) is an isomorphism
of quasi-coherent sheaves for every n. From this definition if we replace X0 by any open subscheme con-
taining π0(X), then we will obtain a quasi-isomorphic dg-scheme. In this case it seems the right definition
for a dg-scheme is actually in the localization category (with respect to quasi-isomorphisms) which unfortu-
nately is difficult to describe and work with. But if we only deal with the real category of dg-schemes, it will
be a bit restrictive since the gluing process here is strict not up to quasi-isomorphism. These disadvantages
make the concept of dg-schemes too rigid. A summary of our analysis here can be found in [66, Section
1.2].

Remark 2.5.10. There is another definition for derived schemes in [64, Definition 2.1]. A derived scheme X
there consists of a scheme π0X and a (pre)sheafOX on the site of affine open subschemes of π0X with values
in cdgA≤0k such that H0(OX) = Oπ0X and all Hn(OX) are quasi-coherent Oπ0X -modules for n ≤ 0. [50,
Theorem 6.42] shows this definition is weakly equivalent to Definition 2.5.8 here. In this way the abstract
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concept of derived schemes become more vivid and the comparison between derived schemes and classical
schemes is more obvious.

A derived scheme above is affine if the underlying scheme π0X is an affine scheme. With this defini-
tion [64, p186] shows the category of affine derived schemes is equivalent to dAffk at the level of infinite
categories. But unfortunately in [64] Toën does not describe the infinite category structure on the category
of derived schemes since it’s complicated and totally in the context of [50] using hypergroupoids. If we
describe morphisms between derived schemes directly, we may make the same mistake in the case of dg-
schemes since the category of derived schemes does not admit a model structure and its homotopy theory
is difficult to describe under this definition.

In Proposition 2.4.6 we have said the theory of commutative algebras is contained in the homotopy
theory of cdgas. [68, Section 2.2.4] shows how the theory of higher stacks can be contained in the theory of
derived stacks. Moreover we can associate every derived stack with a higher stack as its truncation. Then
a derived stack is a derived scheme if and only if its truncation is a classical scheme.

As for the relationship between dg-schemes and derived schemes, you can consult with [62, Example 2
in Sec. 4.3].

Remark 2.5.11 (Truncation). The natural embedding j : Affk → dAffk induces a functor

j∗ : sPr(dAffk)→ sPr(Affk), F 7→ F ◦ j

On the other hand for any simplicial presheaf G ∈ sPr(Affk),

Affopk sSet

(dAffk)
op

G

j
j!G

j!G is defined to be the left Kan extension (Definition A.3.1) of G along j which exits since sSet is cocomplete.
Then we obtain an adjoint pair

j! : sPr(Affk) sPr(dAffk) : j
∗

This adjoint pair is a Quillen pair. Moreover by properties of left Bousfield localization [67, Section 4.8]
and [68, Section 2.2.4] show this pair can be defined on local model categories. Therefore we obtain an
adjunction between usual higher stacks and derived stacks.

i = Lj! : Stk dStk : t0 = Ho(j∗)

[68, Lemma 2.2.4.1] shows the functor i = Lj! is fully faithful. Hence the theory of higher stacks can
be contained in the theory of derived stacks. [68, Lemma 2.2.4.2] shows j∗ is left and right Quillen, and
preserves weak equivalences. That’s why we can just define t0 as Ho(j∗). More properties of this adjunction
can be found in [68, Section 2.2.4]. For example they all preserve (derived) n-geometric stacks.
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3 Derived Critical Loci

We always suppose k is a field of characteristic 0. Our main reference in this section is [70].

3.1 Koszul Resolution

Definition 3.1.1. Let R be a commutative k-algebra and M be an R-module. The tensor algebra of M over
R is defined to be the non-commutative R-algebra T •(M) := ⊕n≥0Tn(M) where Tn(M) = M⊗n and
T 0(M) = R. The multiplication in T (M) is that

(x1 ⊗ · · · ⊗ xn) · (y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym ∈ Tn+m(M)

The exterior algebra
∧•

(M) = T (M)/ ∼ where the two sided ideal is generated by x ⊗ x ∈ T 2(M).
Elements in

∧n
(M) = Tn(M)/ ∼ are denoted by x1 ∧ · · · ∧ xn.

The symmetric algebra Sym•(M) = T (M)/ ∼ where the two sided ideal is generated by x ⊗ y − y ⊗ x.
The image x1 ⊗ · · · ⊗ xn in Symn(M) is denoted by x1 · · ·xn. Sym•(M) is commutative.

Fact 3.1.2. Since (x+ y)⊗ (x+ y) = x⊗ x+ x⊗ y + y ⊗ x+ y ⊗ y = 0 in
∧•

(M), x ∧ y = −y ∧ x in
∧•

(M).
Therefore the multiplication in

∧•
(M) is graded commutative.

Example 3.1.3. IfM is a freeR-module of finite rank i.e. M = Rx1⊕· · ·⊕Rxn. Then
∧k

(M) is anR-module
freely generated by elements xi1 ∧ · · · ∧ xik where i1 < · · · < ik. And Sym•(M) = R[x1, · · · , xn].

Recall a differential graded algebra (dga) is a (cochain) complexA• with the unit 1 ∈ A0 and multiplication
· : An×Am → An+m satisfying d(ab) = (da)b+(−1)|a|a(db) where |a| is the degree of a. Also we may write
A• = ⊕n∈ZAn. Another equivalent definition says a dga is actually a differential graded category with only
one object. A dga is commutative if it’s graded commutative i.e. ab = (−1)|a||b|ba.

Definition 3.1.4. LetR be a commutative k-algebra andE be anR-module with anR-linear map x : E → R.
Then the Koszul complex K(E, x) is defined to be the following complex

K(E, x) := · · · −→
k∧
E

dk−→ · · · d2−→
1∧
E = E

x−→ R −→ 0

where

dk :

k∧
E →

k−1∧
E, e1 ∧ · · · ∧ ek 7→

k∑
i=1

(−1)i+1x(ei)e1 ∧ · · · ∧ êi ∧ · · · ∧ ek

Clearly dk−1dk = 0 and d(e ∧ e′) = de ∧ e′ + (−1)|e|e ∧ e′, Moreover since the wedge product is graded
commutative, the Koszul complex K(R,E;x) is actually a commutative differential graded algebra (cdga).

Remark 3.1.5. In the following we suppose R is a commutative k-algebra and P is a finite projective R-
module which is also equivalent to saying the module sheaf P̃ is a locally free sheaf of finite rank over
SpecR [3, Tag00NV]. Let P∨ := HomR(P,R) and S = Sym•R(P

∨). For n ≤ 0, we define (S ⊗
∧•

P∨)n =

S ⊗R
∧−n

P∨. Then the fancy Koszul (cochain) complex K(R;P ) of S-modules is defined to be following
(cochain) complex.

K(R;P ) := · · · −→ S ⊗R
n∧
P∨

d−n

−−→ · · · d
−2

−−→ S ⊗R
1∧
P∨

d−1

−−→ S −→ 0

where
d : x1 · · ·xp ⊗ (y1 ∧ · · · ∧ yn) 7→

∑
i

(−1)i+1x1 · · ·xpyi ⊗ (y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn)

From Remark 2.4.2 we see the fancy Koszul cochain complex K(R;P ) is actually the free graded commu-

tative algebra S(P∨ id−→ P∨) where the cochain complex is centered at [−1, 0]. Then K(R;P ) is cofibrant in
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cdgA≤0R and cdgA≤0S , since S is left Quillen. Note that S → K(R;P ) is a cofibration in cdgA≤0R because
S = S(P∨) and the following map

· · · 0 0 P∨

· · · 0 P∨ P∨
id

id

in Ch≤0R is a cofibration.

Theorem 3.1.6. The Koszul (cochain) complex K(R;P ) is the projective resolution of R when viewing R as an
S-module via the natural projection S → R.

Proof. Since P is locally free, then P∨ will be locally free as well. Therefore
∧n

P∨ is locally free over SpecR
and S ⊗R

∧n
P∨ is finite projective over S. Next we prove the following (cochain) complex

· · · −→ S ⊗R
n∧
P∨

d−n

−−→ · · · d
−2

−−→ S ⊗R
1∧
P∨

d−1

−−→ S
proj−−→ R −→ 0

has trivial (co-)homology groups.

· · · S ⊗R
∧n

P∨ · · · S ⊗R
∧1

P∨ S R 0

· · · S ⊗R
∧n

P∨ · · · S ⊗R
∧1

P∨ S R 0

d proj

s−1
s0

s1sn

s−1 : R→ S is the natural embedding and

sn : S ⊗R
n∧
P∨ → S ⊗R

n+1∧
P∨, x1 · · ·xp ⊗ (y1 ∧ · · · ∧ yn) 7→

p∑
i=1

x1 · · · x̂i · · ·xp ⊗ (xi ∧ y1 ∧ · · · ∧ yn)

Then

x1 · · ·xp ⊗ (y1 ∧ · · · ∧ yn)
d−→ x1 · · ·xpyi ⊗

∑
i

(−1)i+1(y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn)

sn−1−−−→
∑
i

(−1)1+ix1 · · ·xp ⊗ (yi ∧ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn)

+
∑
i

(−1)i+1
∑
j

x1 · · · x̂j · · ·xpyi ⊗ (xj ∧ y1 ∧ ŷi ∧ · · · ∧ yn)

and

x1 · · ·xp ⊗ (y1 ∧ · · · ∧ yn)
sn−→

∑
j

x1 · · · x̂j · · ·xp ⊗ (xj ∧ y1 ∧ · · · ∧ yn)

d−→
∑
j

x1 · · ·xj · · ·xp ⊗ (y1 ∧ · · · ∧ yn)

+
∑
j

∑
i

(−1)ix1 · · · x̂j · · ·xpyi ⊗ (xj ∧ · · · ∧ ŷi ∧ · · · ∧ yn)

This means sn1
◦ d + d ◦ sn = (p + n)id on Symp

R(P
∨) ⊗R (

∧n
P∨). For any u ∈ S ⊗R

∧n
P∨, u =

∑
p up

where up ∈ Symp
R(P

∨) ⊗R
∧n

P∨. Then dui ∈ Symp+1
R (P∨) ⊗R

∧n−1
P∨. Hence du = 0 ⇔ dup = 0 for all

p. And moreover (sn−1d + dsn)up = (p + n)up. Since char k = 0, p + n is a unit. Then for any u satisfying
du = 0, cls up = cls dsn(

up

p+n ) = 0 where cls means the image is in the homology groups. Therefore clsu = 0.
This proves K(R;P ) is the projective resolution of R of S-modules.

Corollary 3.1.7. The map K(R;P )→ R in cdgA≤0S is actually a cofibrant replacement.
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3.1.1 Derived Zero Loci

Given an element s ∈ P , then there will exist an R-linear map s : P∨ → R sending any f ∈ P∨ to f(s) ∈ R.
And we obtain the Kozul complex

K(R,P ; s) = K(P∨, s) = · · · −→
n∧
P∨

d−→ · · · −→
1∧
P∨ = P∨

s−→ R −→ 0

We can view it as a cochain complex whose module at the −n degree for n ≥ 0 is
∧n

P∨.
Since S = Sym•R(P

∨), there exists a map φs : S → R sending x1 · · ·xp ∈ S to x1(s) · · ·xp(s) where
xi : P → R ∈ P∨. Via this map, R will be an S-algebra and we denote it as Rs to distinguish it from
the original S-algebra structure on R obtained from the natural projection. Viewing Rs as a cdga over S
centered at the degree 0, we have the tensor product Rs ⊗S K(R;P ) on the category of S-cdgas where

(Rs ⊗K(R;P ))−n = Rs ⊗S S ⊗R (

n∧
P∨) ∼= Rs ⊗R (

n∧
P∨) ∼=

n∧
P∨

And we obtain the canonical isomorphism Rs ⊗S K(R;P ) ∼= K(R,P ; s) between S-cdgas where x1 · · ·xp ∈
S acts on

∧n
P∨ by sending y1 ∧ · · · ∧ yn to x1(s) · · ·xp(s)y1 ∧ · · · ∧ yn.

Remark 3.1.8. The above statements imply we can compute the homotopy pushout Rs
φs←− S

proj−−→ R in a
way that according to Theorem A.4.10 it’s just the pushout of Rs

φs←− S −→ K(R;P ) since cdgA≤0R is left
proper. Moreover we have

Rs ⊗L
S R = Rs ⊗S K(R;P ) = K(R,P ; s)

Dually in the category dAffR of affine derived scheme, the homotopy fiber product

SpecR

SpecRs SpecSs

0

is just Zh(s) = SpecK(R.P ; s) where s and 0 correspond with φs and the natural projection S → R respec-
tively. Zh(s) is called the derived zero locus of the section s.

In [70] Vezzosi computes this homotopy pullback in the category dStk of derived stacks, in which the
result is RSpecK(R.P ; s). To obtain this result we need to prove RSpec commutes with homotopy pullbacks.
As we have known in Remark 2.5.6,

Spec = h : dAffk → dAff∧k , SpecA 7→ HomdAffk
(Γ(−),SpecA)

and then RSpec = SpecR where R is the fibrant replacement functor. In Section 2.2 we have proved the
functor h preserves fibrant objects and trivial fibrations. Moreover if the codoamin is sPr(dAffk)proj not
the Bousfield localization dAff∧k , h will preserve fibrations. This is also true when passing to dAff∧k if
we only deal with maps between fibrant objects, since Theorem A.6.17 tells us in the Bousfield localiza-
tion fibrations between fibrant objects are precisely fibrations in the original category. Therefore RSpec
preserves weak equivalences by Lemma A.3.2 (Ken Brown) and fibrations. Moreover the hom functor
HomdAffk

(Γ(X),−) preserves arbitrary limits especially fiber products. All these prove RSpec commutes
with homotopy pullbacks.

Remark 3.1.9. In classical algebraic geometry on a scheme X , any locally free OX -module sheaf E of finite
rank can be associated with a (geometric) vector bundle f : SpecXSymOX

E∨ → X16 in the sense that there

16In many references the actual (geometric) vector bundle is defined as SpecXSymOX
E since it can be easily generalized to arbitrary

quasi-coherent module sheaves and induce an anti-equivalence between quasi-coherent module sheaves and abstract vector bundles
[3, Tag01M1]. But in the case of finite locally free sheaf E , we have E∨∨ = E . Therefore our definition here will just induce an
equivalence not an anti-equivalence.
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exists an open covering {Ui|i ∈ I} for X such that f−1(Ui) in SpecXSymOX
E∨ is isomorphic to some affine

space An.
Here for the affine case SpecS = SpecSymRP

∨ is a vector bundle on SpecR and s ∈ P̃ (SpecR) is a global
section for the canonical structure of SpecS over SpecR. Therefore Zh(s) gets the name the derived zero
locus of the section s.

The definition for derived zero locus can also be generalized to the case of schemes. Suppose X is
a scheme over k and E is a finite locally free OX -module sheaf whose corresponding (geometric) vector
bundle is E = SpecXSymOX

E∨. Let s ∈ E(X) and this will define a map s : X → E which is glued by
s|SpecR. We can compute the homotopy fiber product Xs

s−→ E
0←− X in the category of derived schemes or

derived stacks dStk. In the sense of Remark 2.5.10, K(X; E) will be a derived scheme with the underlying
topological space X and the homotopy fiber product

Xs ×hE X = Xs ×E K(X; E) = K(X, E ; s) = (

•∧
E∨, ds)

is a derived scheme with the underlying topological space Xs ×E X the usual fiber product.
We need to explain the fiber product of derived schemes in more details. K(X; E) is a sheaf of cdgas

on X which locally is K(R;P ). To see it’s a derived scheme we need to compute the cohomology group
H0K(X; E). But for the affine case we see

H0K(R;P ) = Sym•RP
∨/Sym1

RP
∨ = R

Therefore the underlying topological space forK(X; E) is glued by SpecRwhich is justX . Then (K(X; E), X)
is a derived scheme.

As for K(X, E ; s), it’s actually also a sheaf of cdgas on the underlying topological space X . Now we
want to compute its cohomology group H0K(X, E ; s). Again we deal with this problem locally. Clearly
H0K(R.P ; s) = R/im s where s : P∨ → R sends any f ∈ P∨ to f(s). The usual fiber product is that
SpecRs ⊗S R. View R as S/I where I = Sym1

RP
∨ then the tensor product should be Rs/IRs which is just

R/im s. SpecR/im s is a closed subscheme of SpecR. Gluing affine cases we obtain a closed subscheme
Xs ×E X of X . Then K(X, E ; s) is naturally a sheaf on Xs ×E X .

Our discussion here in this section can also be translated into the area derived differential geometry where
the algebra model is not cdgas but differential graded C∞-rings. Details of this viewpoint can be found in the
nLab page of seminar notes for derived critical loci written by Urs Schreiber.

3.2 Derived Critical Loci

Suppose X is a smooth scheme over k. Then Ω1
X/k the sheaf of differential forms of degree 1 is finite locally free.

Note that for any scheme the diagonal map ∆ : X → X×kX is a locally closed immersion. LetW ⊆ X×kX
be an open subscheme such that ∆ : X → W is a closed immersion and its corresponding ideal is I. Then
Ω1
X/k := ∆∗(I/I2). So Ω1

X/k is glued by the module of Kähler differentials of rings. In some textbook Ω1
X/k

is also called the cotangent sheaf of X and its corresponding bundle T∗X := SpecXSymOX
(Ω1

X/k)
∨ is the

cotangent bundle over X . Similarly the dual sheaf TX := HomOX
(Ω1

X/k,OX) is called the tangent sheaf and
its corresponding bundle T∗X := SpecXSymOX

Ω1
X/k is the tangent bundle.

Given a global section f ∈ OX(X) which is actually equivalent to a map f : X → A1
k, df ∈ Ω1

X/k(X) is
the Kähler differential of f .

Definition 3.2.1. The derived critical locus Crith(f) of f is defined to be the derived zero locus Zh(df) of df .
Then its corresponding algebra will be K(X,Ω1

X/k; df) = (
∧•

TX , df).
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3.2.1 Gerstenhaber Algebra

Definition 3.2.2. For an objectA in cdgA≤0k , a Lie bracket of degree 1 onA is a bilinear map [·, ·] : A⊗A→ A[1]
satisfying

• (graded antisymmetry): [a, b] = −(−1)(|a|+1)(|b|+1)[b, a]

• (Jacobi relation): [a, [b, c]] = [[a, b], c] + (−1)(|a|+1)(|b|+1)[b, [a, c]]

• (differential): d[a, b] = [da, b] + (−1)|a|+1[a, db]

This Lie bracket make A be a differential graded Lie algebra (dgLa) of degree 1. Moreover we say such A is a
differential graded Gerstenhaber algebra (dgGa) if the bracket is a biderivation of the product i.e.

[a, b · c] = [a, b] · c+ (−1)|b|(|a|+1)b · [a, c]

Remark 3.2.3. For axioms of a dgLa of degree 1, with the axiom of graded antisymmetry the second axiom
of Jacobi relation is equivalent to the following Jacobi equation of degree 1

(−1)(|a|+1)(|c|+1)[a, [b, c]] + (−1)(|c|+1)(|b|+1)[c, [a, b]] + (−1)(|b|+1)(|a|+1)[b, [c, a]] = 0

And for a dgGa, we also have

[a · b, c] = a · [b, c] + (−1)|b|(|c|+1)[a, c] · b

Example 3.2.4 (Schouten bracket). 17 SupposeX = SpecR is a smooth scheme over k and TR := (Ω1
R/k)

∨ the

tangent module. Then we have a Koszul algebra K(TR) =
⊕

n≤0
∧−n

TR where we ignore the differential
and only consider the level of graded algebras. Since

TR = HomR(Ω
1
R/k, R) = Derk(R,R)

for any element f ∈ TR we can also regard it as a derivation R → R. So for f ∈ TR and a ∈ R we define
[f, a] = f(a) ∈ R. Note that here f(a) is actually f(da) where d : R→ Ω1

R/k is the canonical derivation. For
two derivations f, g ∈ TR we let [f, g] = f ◦ g − g ◦ f . Note that it’s not difficult to check [f, g] is actually a
k-derivation. In general we define

[f1 ∧ · · · ∧ fn, a] =
n∑
i=1

(−1)n−ifi(a)f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn

for fi ∈ TR, a ∈ R and

[f1 ∧ · · · ∧ fn, g1 ∧ · · · ∧ gm] =

n∑
i=1

m∑
j=1

(−1)i+j [fi, gj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn ∧ g1 ∧ · · · ∧ ĝj ∧ · · · ∧ gm

for fi, gj ∈ TR. These definitions will make K(TR) be a Gerstenhaber algebra with zero differentials
(check!). For Gerstenhaber condition it’s enough to notice

[f1 ∧ · · · ∧ fn, g1 ∧ · · · ∧ gm ∧ h1 ∧ · · · ∧ hl]

=

n∑
i=1

m∑
j=1

(−1)i+j [fi, gj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn ∧ g1 ∧ · · · ∧ ĝj ∧ · · · ∧ gm ∧ h1 ∧ · · · ∧ hl

+

n∑
i=1

l∑
k=1

(−1)i+m+k[f1, hk] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn ∧ g1 ∧ · · · ∧ gm ∧ h1 ∧ · · · ∧ ĥk ∧ · · · ∧ hl

17 [43, Example VII.15]
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and

[f1 ∧ · · · ∧ fn, ab] =
n∑
i=1

(−1)n−1(afi(b) + bfi(a))f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn

The two cases above are then clear. Next we only need to consider [f, ag] for f, g ∈ TR and a ∈ R which is
just

[f, ag] = f(ag)− (ag)f = f(a)g + a(fg)− a(gf) = [f, a]g + a[f, g]

This can be generalized for [f1 ∧ · · · ∧ fn, ag1 ∧ · · · ∧ gm].
We omit the process of checking them satisfying the Jacobi relation.

Theorem 3.2.5. Let X = SpecR be a smooth affine scheme over k and α ∈ Ω1
R/k. Then with the Schouten bracket

described above, the Koszul cdga K(R,Ω1
R/k;α) is a dgGa.

Proof. For fi ∈ TR and a ∈ R we have

d[f1 ∧ · · · ∧ fn, a] = d
( n∑
i=1

(−1)n−ifi(a)f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fn
)

=

n∑
i=1

(−1)n−ifi(a)
( i−1∑
j=1

(−1)j+1α(fj)f1 ∧ · · · ∧ f̂j ∧ · · · ∧ f̂i ∧ · · · ∧ fn

+

n∑
j=i+1

(−1)jα(fj)f1 ∧ · · · ∧ f̂i ∧ · · · ∧ f̂j ∧ · · · ∧ fn
)

and on the other hand we have

[d(f1 ∧ · · · ∧ fn), a] = [

n∑
j=1

(−1)j+1α(fj)f1 ∧ · · · ∧ f̂j ∧ · · · ∧ fn, a]

=

n∑
j=1

(−1)j+1α(fj)
( j−1∑
i=1

(−1)n−1−ifi(a)f1 ∧ · · · ∧ f̂i ∧ · · · ∧ f̂j ∧ · · · ∧ fn

+

n∑
i=j+1

(−1)n−ifi(a)f1 ∧ · · · ∧ f̂j ∧ · · · ∧ f̂i ∧ · · · ∧ fn
)

Therefore we have an equation

d[f1 ∧ · · · ∧ fn, a] = [d(f1 ∧ · · · ∧ fn), a]

For f, g ∈ TR, α[f, g] = α(fg − gf) = f(dg(α)) − g(df(α)) where d : R → Ω1
R/k is the canonical

derivation. On the other hand

[α(f), g] + [f, α(g)] = −[g, α(f)] + [f, α(g)] = −g(df(α)) + f(dg(α))

More general result

d[f1 ∧ · · · ∧ fn, g1 ∧ · · · ∧ gm] = [d(f1 ∧ · · · ∧ fn), g1 ∧ · · · ∧ gm] + (−1)n+1[f1 ∧ · · · ∧ fn, d(g1 ∧ · · · ∧ gm)]
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can be checked. The left side is actually

d[f1 ∧ · · · ∧ fn, g1 ∧ · · · ∧ gm]

=

n∑
i=1

m∑
j=1

(−1)i+j
(
α([fi, gj ]) ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ ĝj ∧ · · · ∧ gm

+

i−1∑
k=1

(−1)k+2α(fk)[fi, gj ] ∧ f1 ∧ · · · ∧ f̂k ∧ · · · ∧ f̂i ∧ · · · ∧ ĝj ∧ · · · gm

+

n∑
k=i+1

(−1)k+1α(fk)[fi, gj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ f̂k ∧ · · · ∧ ĝj ∧ · · · gm

+

j−1∑
k=1

(−1)n+k+1α(gk)[fi, gj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ ĝk ∧ · · · ∧ ĝj ∧ · · · gm

+

m∑
k=j+1

(−1)n+kα(gk)[fi, gj ] ∧ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ ĝj ∧ · · · ∧ ĝk ∧ · · · gm
)

For the right side

[d(f1 ∧ · · · ∧ fn), g1 ∧ · · · ∧ gm]

=[

n∑
k=1

(−1)k+1α(fk)f1 ∧ · · · ∧ f̂k ∧ · · · ∧ fn, g1 ∧ · · · ∧ gm]

=

n∑
k=1

(−1)k+1α(fk)
( k−1∑
i=1

m∑
j=1

(−1)i+jf1 ∧ · · · ∧ f̂i ∧ · · · ∧ f̂k ∧ · · · ∧ ĝj ∧ · · · ∧ gm

+

n∑
i=k+1

m∑
j=1

(−1)i−1+jf1 ∧ · · · ∧ f̂k ∧ · · · ∧ f̂i ∧ · · · ∧ ĝj ∧ · · · ∧ gm
)

+ (−1)(n−1)(m+1)
n∑
k=1

(−1)k+1[α(fk), g1 ∧ · · · ∧ gm] ∧ f1 ∧ · · · ∧ f̂k ∧ · · · ∧ fn

(−1)n+1[f1 ∧ · · · ∧ fn, d(g1 ∧ · · · ∧ gm)] can be computed similarly. We omit this computation.

BV Formalization

Definition 3.2.6. A Batalin-Vilkovisky algebra or BV-algebra simply is a Gerstenhaber algebra with a linear
map ∆ : A→ A[1] of degree 1 such that

• ∆ ◦∆ = 0;

• it satisfies ∆(ab) = ∆(a)b+ (−1)|a|a∆(b) + (−1)|a|[a, b].

Remark 3.2.7. For a BV-algebra we have

∆(∆(a)b) + (−1)|a|∆(a∆(b)) + (−1)|a|∆([a, b]) = 0

which is just
∆([a, b]) = [∆(a), b] + (−1)|a|+1[a,∆(b)]

Then ∆ becomes a derivation of degree 1 for the bracket.

Definition 3.2.8. A BV-algebra is a differential graded BV-algebra (dgBV-algebra) or a Beilinson-Drinfeld (BD)
algebra if it satisfies d∆+∆d = 0.
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An example for BV-algebra appears in differential geometry or more precisely mathematical physics.

Definition 3.2.9. For a smooth manifoldM of dimension n, a top form is differential n-form in Ωn(M) which
is called a volume form if it’s nowhere vanishing. In this case M is orientable.

Example 3.2.10. A symplectic manifold consists of a pair (M,ω) where M is a smooth manifold of dimension
2n and ω is a closed non-degenerate 2-form which is called a symplectic form. Every symplectic manifold
admits a volume form ωn

n! which is called symplectic volume of (M,ω).

Example 3.2.11. Suppose M is a smooth manifold of dimension n which admits a volume form. Our
discussion for derived critical loci being a Gerstenhaber algebra is also valid here. With Schouten bracket
the cdga

∧•
Γ(TX) for multivector fields is a Gerstenhaber algebra. For any volume form µ, its contraction

induces isomorphisms

µ : Ωn−i(M)
∼−→

i∧
Γ(TX)

for 0 ≤ i ≤ n. In this case we define ∆ = µ◦ddR ◦µ−1 and then
∧•

Γ(TX) will be a BV-algebra. This appears
in BV-formalization.

As for Calabi-Yau folds, a nowhere vanishing holomorphic volume exists and therefore the statement
above is also true in this case.

In mathematical physics there is a concept of BV-BRST formalization to deal with the critical loci of an
action functional S and the symmetries of S where the latter is often a Lie groupoid or more generally a
L∞-groupoid. Then the obtained BV-BRST complex consists of two parts. For n ≤ 0 the BV part is just what
we discussed above and for positive degrees the BRST part is the associated Chevalley-Eilenberg algebra
of the L∞-algebroid which is the (homotopy) quotient of the gauge group. Details of these can be found in
the nLab page of BV-BRST formalization.

3.3 Loop Spaces

In algebraic topology there is a notion of loop spaces. For a topological space X , its loop space ΩxX consists
of pointed maps (S1, 0) → (X,x) with the compact-open topology. More generally a free loop space for X
is defined as LX := Map(S1, X) with the compact-open topology. Note that an elementary theorem in
algebraic topology says S1 is the first Eilenberg-Maclane space K(Z, 1). This motivates us to define the
derived loop stack for a stack F as the derived mapping space from K(Z, 1) to F . In this section we will
describe this structure clearly and then talk about the derived zero locus of the section 0.

In sSet, N(Z) the nerve of Z represents a model for K(Z, 1). We use the symbol BZ or simply S1 to
denote the constant derived stack of K(Z, 1) which means it’s the stackification of the constant simplicial
presheaf sending any object to the simplicial set K(Z, 1).

Remark 3.3.1. This definition above having a historical flavor can play an important role in classifying
cohomology groups. For example we suppose the Grothendieck site C is just the category Top of topolog-
ical spaces with the usual open immersions as the pretopology. Suppose K(Z, n) is the Eilenberg-Maclane
simplicial set such that its homotopy groups are all trivial except πnK(Z, n) = Z. Actually K(Z, n) can be
easily obtained via Dold-Kan correspondence. Then we consider the constant simplicial presheaf C → sSet
sending any topological space toK(Z, n). We also use the symbolK(Z, n) to denote the stackification of the
constant simplicial presheaf in the local model category St(C) = Ho(sPr(C)locproj). Then for any topological
space X viewing it as a representable simplicial presheaf which is actually a usual sheaf, we have

πiRMap(X,K(Z, n)) ∼= Hn−i(X,Z)

where the right side is computed as the sheaf cohomology.
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Remark 3.3.2 (Mapping stacks). In the usual topos theory, a Grothendick topos i.e. Shv(C) for some
Grothendieck site C is Cartesian closed which means for any two sheaves F and G there is an internal
hom sheaf Hom(F,G) such that for any other sheaf H we have a natural isomorphism

HomShv(C)(H × F,G) ∼= HomShv(C)(H,Hom(F,G))

Details can be found in [41, Section III.6]. This is also true for higher topoi. In our cases here this means the
category of stacks Stk and derived stacks dStk are Cartesian closed. Let us use Ho(sPr(C)loc) the symbol
of local model category to denote Stk or dStk. Then the statement above means for any two objects F and
G in Ho(sPr(C)loc) the following functor

Ho(sPr(C)loc)→ Ho(sSet), H 7→ RMap(H×h F ,G)

is representable by some object Map(F ,G) in Ho(sPr(C)loc), which means

RMap(H×h F ,G) ∼= RMap(H,Map(F ,G))

Note that in the following we always use the symbol Map(F ,G) (resp. RMap(F ,G)) to mean the mapping
stack (resp. derived mapping stack) in Stk (resp. dStk), so that we can distinguish them.

Here we deal with the homotopy theory of (derived) stacks directly and there is naturally a question that
whether this Cartesian closed property can be lifted to the local model category Ho(sPr(C)loc) of simplicial
presheaves in other words whether Ho(sPr(C)loc) is a symmetric monoidal model category with the usual
product. For sPr(C)locinj the answer is positive but it’s not true for sPr(C)locproj . However, the two model
categories are Quillen equivalent and therefore passing to homotopy theories i.e. the level of∞-categories,
the right derived internal hom functor for sPr(C)locinj gives the correct answer for mapping stacks. More
precisely in sPr(C)locinj there is an internal hom functor

Hom : sPr(C)locinj × sPr(C)locinj → sPr(C)locinj , Hom(F ,G)(c) = Map(c×F ,G)

such that with the usual direct product sPr(C)locinj is a symmetric monoidal model category in the sense of
Definition A.5.8. And moreover the mapping stack functor Map is computed as RHom. Note that

RHom(F ,G) = Hom(F , RinjG)

where RinjG is a fibrant replacement for G in sPr(C)locinj . Details of these can be found in [67, Section 3.6].
There is a more general discussion in [38] where Lurie shows for any presentable ∞-category when an

∞-functor from it to the ∞-category of simplicial sets is representable ( [38, Proposition 5.5.2.2]). More
internal properties of∞-topoi can be found in [67] and [38].

If F and G are stacks in Stk, then their derived mapping stack is defined to be RMap(i(F), i(F)) where
i : Stk → dStk is an embedding in Remark 2.5.11. Moreover the truncation of derived mapping stacks will
be isomorphic to the usual one, i.e.

t0RMap(i(F), i(G)) ∼= Map(F ,G)

Definition 3.3.3. Let F be a stack in Stk. The loop stack for F is defined to be LF := Map(S1,F) and its
derived loop stack is RLF := RMap(S1, i(F)). If F is a derived stack in dStk, then the derived loop stack of F
is defined as RLF := RMap(S1,F).

Although here we define the concept of (derived) loop spaces in a really general context, we are more
interested in elementary cases like (derived) schemes.

Remark 3.3.4. To compute the derived loop stack RLF for a derived stackF , we need to figure out the circle
object S1 clearly. Notice that in sSet, ∆1/∂∆1 serves a model for K(Z, 1). Moreover generally ∆1/∂∆1 is
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just the homotopy colimit ∗
∐L
∗
∐L ∗ ∗. First note that in sSet every object is cofibrant, then ∗

∐L ∗ = ∗
∐
∗.

Next to compute the following homotopy colimit

∗
∐
∗ ∗

∗

since sSet is left proper, we replace ∗
∐
∗ → ∗ by a cofibration ∗

∐
∗ ↪→ ∆1 where it’s obvious to see ∆1 is

weakly equivalent to ∗. Therefore the homotopy colimit is actually

∆1
∐
∗
∐
∗

∗ = ∆1/∂∆1

which is just the circle object in Ho(sSet). So in an∞-topos C its homotopical circle is actually defined as

S1 := ∗
∐
∗
∐
∗

∗

where colimits are computed in the context of∞-categories. Then for any object X in this∞-topos, its loop
space will be defined as

LX := Map(S1, X) = X ×X×X X

In our case here, the∞-topos is Stk and dStk. Then the derived loop stack for a derived stack F is actually

RLF = F ×hF×hF F

Remark 3.3.5. As shown in the nLab page of “Slice Action”, for any object X in an ∞-topos C its free
loop space LX is naturally a group object in C/X whose group structure comes from the composition and
inversion of loops. In the classical case, we let C be Top and the loop space Map(S1, X) is regraded as
an object in Top/X via an evaluation map of a fixed point of S1. Then this gives a group structure on
Map(S1, X) clearly which is similar to ΩxX . There is a similar discussion for derived zero loci in [70],
where 02 = RSpecK(X, E ; 0) the self intersection of the zero section has the structure of Segal monoid in
dStk/X .

Example 3.3.6. Suppose A is a cdga in cdgA≤0k and X = SpecA is its dual object in dAffk. Then we see
viewing as a derived stack, the derived loop space for X is

RLX = RSpec(A⊗L
A⊗LA A)

since we have proved RSpec commutes with homotopy fiber products. This construction will compute the
Hochschild (co)homology for A [36, Proposition 1.1.13].

If A = k[x] the affine line, then its derived loop space is just its self intersection as discussed in Example
2.5.7.

Next we suppose A is a regular commutative algebra which means the corresponding affine scheme is
smooth over k, then the Hochschild-Kostant-Rosenberg (HKR) isomorphism HHn(A) ∼= ΩnA/k (see [36, Section
3.4]) computes the derived loop space as the de Rham dg-algebra

RSpec(· · · 0−→
n∧
Ω1
A/k

0−→ · · · 0−→ Ω1
A/k

0−→ A) = RSpecS(Ω1
A/k[1]) = RSpecK(A, (Ω1

A/k)
∨; 0)

There is a generalization in [7] and [69], which deal with more general cases using the technique of affiniza-
tion. It’s shown in [7, Proposition 3.1] (originally in Toën’s paper Champs affines, arXiv:math/0012219) that
there is an adjunction

LO : dStk dAffk : RSpec

49

https://ncatlab.org/nlab/show/free+loop+space+object#SliceAction
https://arxiv.org/abs/math/0012219


Then for any derived stack F its affinization is defined to be RSpecLO(F). [7, Proposition 1.1] shows for a
derived scheme X we have an equivalence

HC(LO(X)) ≃ SLO(X)(ΩX [1])

where the left side is the Hochschild chain and ΩX [1] is the cotangent complex for X .

3.4 Shifted Symplectic Structures

In this section we only talk about shifted symplectic structures in the affine case i.e. for cdgas. More general
statements for derived Artin stacks can be found in [48].

As talked before for a cdga A, its differential forms Ω1
A/k of degree 1 is a differential graded A-module

and the derivation ddR : A→ Ω1
A/k is actually a chain map. In this case the de Rham cocomplex

Ω•A := A
ddR−−→ Ω1

A/k
ddR−−→ Ω2

A/k → · · ·

where ΩnA/k =
∧n
A Ω1

A/k is actually the following bicomplex

...
...

...

A−2 Ω1,−2
A/k Ω2,−2

A/k · · ·

A−1 Ω1,−1
A/k Ω2,−1

A/k · · ·

A0 Ω1,0
A/k Ω2,0

A/k · · ·

d

d

ddR

−d

−d

ddR

ddR ddR

ddR

ddR

ddR

ddR

ddR

d

d

Here we also write Ω0
A/k for the cdga A. Note that there is a sign trick. We know ddR is a map of chain

complexes but in the definition of a bicomplex it requires dvdh+dhdv = 0 so that the induced total complexes
will really be complexes. Therefore in the column Ωp,•A/k the differential in it is defined as (−1)pd. Then its

total (co)complex Tot
∏
Ω•A is defined such that

(Tot
∏
Ω•A)

n :=
∏

p+q=n

Ωp,qA/k

and the differential on Ωp,qA/k is actually ddR + (−1)pd.
For a complex or a bicomplex, there is a filtration defined as follows

F p(· · · → V n → V n+1 → · · · ) = · · · → 0→ V p → V p+1 → · · ·

Here for algebraic de Rham complex, such filtration is called Hodge filtration. Classically for a smooth alge-
braic varietyX over k especially over C, the sheaf ZpΩ•X will be quasi-isomorphic to (F pΩ•X)[p] in the sense
of hypercohomology, which means the sheaf cohomology of ZpΩ•X will be isomorphic to the hypercohomol-
ogy of algebraic Hodge filtration (F pΩ•X)[p].
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Remark 3.4.1. For our purpose here that the construction should be in the homotopy sense, we replace a
cdga A by its cofibrant replacement QA and consider Ω•QA or the cotangent complex LA = Ω1

QA/k ⊗QA A
and its wedge products

∧• LA. The two points are equivalent and we explain why they are equivalent.
Given a map f : A→ B in cdgA≤0k , we have a Quillen adjunction

f∗ := −⊗A B : dgMod≤0A dgMod≤0B : f∗

and moreover if f is a quasi-isomorphism, then this will induce an equivalence on the homotopy level.
Since f∗ creates weak equivalence i.e. a morphism g ∈ dgMod≤0B is a weak equivalence if and only if f∗(g)
is a weak equivalence, we only need to prove for any cofibrant object M in dgMod≤0A the adjunction unit
M → M ⊗A B is a weak equivalence.18 By the functorial cofibrant replacement construction in the small
object argument, we may just suppose M is quasi-free i.e. of the form ⊕i∈IA[ni] for some integers ni. Then
we have an isomorphism

TorH
∗A

0 (H∗(M), H∗(B))
∼−→ H∗(M ⊗A B)

and moreover since H∗A ∼= H∗B, the left side above is actually H∗(M). Therefore this proves when QA

is a cofibrant replacement of A in cdgA≤0k and f : QA → A is a weak equivalence, we have a Quillen
equivalence (f∗, f∗), from which we can identify Ω1

QA/k with LA.

Definition 3.4.2 (closed p-forms). For a cdga A or an affine derived scheme SpecA, the complex of closed
p-forms is defined to be Ap,cl(A) := (Tot

∏
F pΩ•QA)[p].

The shifted version for constructions talked above for a cdga A or an affine derived scheme SpecA is
defined as follows

• the complex of n-shifted p-forms is Ap(A,n) := ΩpQA[n]

• the complex of n-shifted closed p-forms is Ap,cl(A,n) := (Tot
∏
F pΩ•QA)[p+ n]

An n-shifted closed p-form ω on SpecA is an element in Z0Ap,cl(A,n) and more precisely ω = (ωi)i≥0 where
ωi ∈ Ωp+i,n−iQA satisfies ddRωi + (−1)p+i+1dωi+1 = 0 and dω0 = 0.

Classically a symplectic structure ω on a smooth schemeX over k is a closed algebraic 2-form in Ω2
X/k(X)

such that the induced map θω : TX → Ω1
X/k is a sheaf isomorphism. We know for a k-algebra R, ΩnR =∧n

Ω1
R/k consists of all alternating functions

∏n
i=1 TR → R. Then for Ω2

R any element in it will define an
alternating map TR × TR → R and especially it induces TR → Ω1

R/k = T∨R. This explains how θω works.
We can generalize this definition to the derived case.

Definition 3.4.3. For a cdga A, its tangent complex is defined to be

TA = L∨A = RHomA(LA, A)

where RHom is the right derived hom functor in dgModA. An n-shifted symplectic structure on A is an n-
shifted closed two-form ω ∈ A2,cl(A, 2) on A such that the underlying two-form ω0 induces an equivalence

θω : TA LA[n]∼

We finish this section by the following theorem.

Theorem 3.4.4. 19 For a function f : X → A1
k where X is a smooth scheme, the derived critical locus Crith(f) is

−1-shifted symplectic.

18It’s Proposition 2.3 in the nLab page of Quillen equivalence.
19 [70, Example 4.8]
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The strategy here is to show cotangent bundles are 0-shifted symplectic and the derived Lagrangian
intersection over an n-shifted symplectic variety is (n− 1)-shifted symplectic [48, Theorem 2.10].

Remark 3.4.5. In this remark we talk about symplectic structures on cotangent bundles.
Considering the case of differential geometry first, for a smooth manifoldM of dimension n it cotangent

bundle T∗M is of dimension 2n. The projection map π : T∗M → M sends (x, ξ) where ξ ∈ T ∗xM is a
covector at x. We know differential coordinates (dξi)1≤i≤n form a basis on the cotangent space and ξ can be
expressed as

∑n
i=1 ξidξi uniquely. The canonical 1-form (or tautological 1-form, or Liouville-Poincaré 1-form) is

defined to be β =
∑n
i=1 xidξi ∈ Ω1(T∗M) where we also use dξi to mean the differential of the coordinate

function at dξi on T∗M. Its differential dβ =
∑n
i=1 dxi ∧ dξi gives a symplectic form on T∗M .

Then for a smooth scheme X we can reduce it to the affine case. So we can just suppose X = SpecR is
a smooth affine scheme over k and the cotangent algebra is T∗R := SymR(Ω

1
R/k)

∨. Since Ω1
R/k is locally free,

reduced to some basic open subset of SpecR we may just assume Ω1
R/k is free. In this case (Ω1

R/k)
∨ can be

canonically identified with Ω1
R/k. Now let {ξi = dxi} be a basis for Ω1

R/k over R where xi ∈ R. Then dξi is
an element in Ω1

T∗R/k. Note that there is a natural embedding R → T∗R. So we can view xi’s as elements
in T∗R. This gives a tautological 1-form

∑
i xidξi in Ω1

T∗R/k whose differential ω0 =
∑
i dxi ∧ dξi gives a

symplectic form on T∗R.

Definition 3.4.6. 20 Assume X is a smooth scheme over k with a symplectic structure ω0. A subscheme
f : L ↪→ X admits a Lagrangian structure if it’s a closed immersion and f∗ω0 = 0.

Then for a 1-form α ∈ Ω1
R/k, the induced two closed immersions 0 : SpecR ↪→ SpecT∗R and α :

SpecRα ↪→ SpecT∗R are Lagrangian. The former is clear. To see the latter we just need to notice that
α∗(dξi) = αidxi. For the Lagrangian embedding f : L → X there is an equivalence TL

∼−→ Lf [−1] [11,
Example 2.13] where Lf is the relative cotanegnt complex.

Proof of Theorem 3.4.4. Let α be a 1-form in Ω1
R/k and we prove the derived zero locus Zh(α) is −1-shifted

symplectic. Generally for Zh(α) = SpecK(R,Ω1
R/k;α), ω0 =

∑
i ddRxi∧ddRξi gives a−1-shifted symplectic

structure. Here symbols come from Remark 3.4.5.
We have the following homotopy pullback diagram

Zh(α) SpecR

SpecRα SpecT∗R

j

α

i

0
⌟

which is also a homotopy pushout diagram in cdgA≤0k . Since the functor of cotangent complexes is left
Quillen, it preserves homotopy pushouts. Therefore if we suppose q = α ◦ j ≃ 0 ◦ i, we have the following
homotopy pushout

q∗LT∗R i∗LR

j∗LRα
LZh(α)

⌟

which is actually the homotopy coequalizer

q∗LT∗R j∗LRα ⊕ i∗LR LZh(α)

(j∗,i∗)

0

From this point we see
q∗LT∗R j∗LRα

⊕ i∗LR LZh(α)

20 [11, Example 2.13]
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is a cofiber sequence (the composition is null-homotopic) hence a distinguished triangle in the derived
category D(Zh(α)). Applying the internal hom functor, we obtain a new distinguished triangle of tangent
complexes

TZh(α) j∗TRα
⊕ i∗TR q∗TT∗R

For the composition map Zh(α)
q−→ SpecT∗R→ Speck it induces a distinguished triangle [53, Theorem 5.1]

q∗LT∗R LZh(α) LZh(α)/T∗R

But according to [53, Theorem 5.3], there is an equivalence

j∗LRα/T∗R ⊕ i
∗LR/T∗R ≃ LZh(α)/T∗R

So that we have the following distinguished triangle

LZh(α)[−1] j∗LRα/T∗R[−1]⊕ i∗LR/T∗R[−1] q∗LT∗R

We know SpecR and SpecRα are Lagrangian subschemes and this will induce the following commutative
diagram

TZh(α) j∗TRα
⊕ i∗TR q∗TT∗R

LZh(α)[−1] j∗LRα/T∗R[−1]⊕ i∗LR/T∗R[−1] q∗LT∗R

≃≃

The induced map TZh(α) → LZh(α)[−1] is therefore an equivalence by the property of triangulated cate-
gories. This proves Zh(α) is −1-shifted symplectic.

Remark 3.4.7. There are more general statements in [48] where we can define the critical locus for any
smooth geometric stack. For a derived Artin stack there is a concept of n-shifted cotangent (derived) stack
( [48, Definition 1.20]) which admits an n-shifted tautological 1-form and therefore it’s n-shifted symplectic.
A general definition for Lagrangian structures is given in [48, Definition 2.8] and then the critical locus is a La-
grangian intersection based on a 0-shifted symplectic cotangent stack hence having a−1-shifted symplectic
structure ( [48, Corollary 2.11]).
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A Homotopical Algebra

In this appendix we give a detailed introduction to the abstract theory of homotopical algebra necessary for
this thesis and references here contain [28], [31] and [55].

Roughly speaking, in a model category there are three important classes of morphisms, called fibrations,
cofibrations and weak equivalences respectively. They reveal the lifting properties and quasi-isomorphisms
in a given category. In fact the most important class of morphisms above is that of weak equivalences since
a category may admit different model structures with equivalent homotopy theory. In general fibrations
and cofibrations are defined to help us study properties of weak equivalences, which is just similar to that
when studying manifolds coordinates are not a must but they can really help us study manifolds and do
some computations. For a given manifold, there are many choices of local coordinates and for a class of
weak equivalences there may also exist some choices of fibrations and cofibrations to make them form a
model category, which means in general for a category the model structure is not unique. But for all these
model structure, their homotopy theories are equivalent since it’s defined to be the localization with respect
to weak equivalences. Therefore we can say homotopical algebra is to study weak equivalences and some
properties invariant under weak equivalences. Hence it’s natural to look at localization categories first.

Definition A.0.1. Let C be a category with small Hom sets, andW be a set of morphisms. Then there will
exist the category of fractions (or called localization category) C[W−1] of C with respect to W and a functor
γ : C → C[W−1] such that:

(1) For any f ∈ W , γ(f) is an isomorphism in C[W−1].
(2) For any functor G : C → D such that ∀f ∈ W, G(f) are isomorphims, there is a unique functor F :
C[W−1]→ D such that F ◦ γ = G.

C C[W−1]

D

G

γ

F∃!

Remark A.0.2. Obviously we know adding isomorphisms to W will not affect the universal category
C[W−1]. And we can enlarge W to become a subcategory of C and this will not affect the localization
category as well. Moreover such localization category always exists though there will be some set theoretic
difficulties. We give the proof of existence here.

Proof. We construct the category of fractions C[W−1] as follows. We consider a directed graph G first. The
vertexes in G are just objects in C. For any map f : A → B in W , we add a map f−1 : B → A. The set
of oriented edges in G consists of edges in C and those f−1. Then, we identify the path f ◦ f−1 with idB ,
f−1 ◦ f with idA , g ◦ h with gh where g, h ∈ Mor(C) , id ◦ g with g, h ◦ id with h where g, h ∈ G and g ◦ (h ◦ l)
with (g ◦ h) ◦ l for any oriented edges g, h, l ∈ G. The quotient directed graph will be the category C[W−1].

There is another description of the Hom set of localization categories. In C[W−1] every morphism
X → Y has the following form:

X ←− X1 −→ X2 ←− X3 −→ ...←− Xn −→ Y

where left arrows are in W , right arrows in Mor(C). Sequences obtained by adding identities are viewed
the same as the original one. Hence for any two sequences we can add identities to them to make them
having the same number of objects. So that we can define a complicated equivalence relation among such
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sequences. This equivalence relation is generated by the following diagram

X1 X2 ... Xn

X Y

X ′1 X ′2 ... X ′n

∼ ∼ ∼

where vertical morphisms are in W . Two sequences are relevant if there is such a commutative diagram
above in C. The equivalence is generated by these relations.

Remark A.0.3. The Definition A.0.1 is strict since all such C[W−1]’s are isomorphic which means there
will exist one-to-one relations on objects and morphisms. But for categories we only consider equivalence
classes of them not isomorphism classes. Therefore we give a weaker definition here.

Let HomW(C,D) be the full subcategory of the category of functors between C andD consisting of those
functors taking every morphism in W to isomorphisms. Then γ : C → C[W−1] is defined to have the
universal property

γ∗ : HomCat(C[W−1],D)
∼−→ HomW(C,D)

where γ∗ is defined by composition and it’s an equivalence between categories not an isomorphism. This
will define C[W−1] up to equivalence.

Remark A.0.4. There is also a simplicial way to deal with the localization such that we obtain a simplicial
category LC satisfying π0LC = C[W−1]. Its name is called the hommock localization. Details can be found
in [18].

Example A.0.5. The category of all small categories is denoted by Cat and The set of equivalences between
categories is denoted byW . For any two functor F,G : C → Dwe say they are equivalent if there is a natural
isomorphism τ : F

∼⇒ G. It’s obvious to see it’s actually an equivalence relation among HomCat(C,D)
and it’s preserved by compositions. Hence we can define the homotopy category Ho(Cat) to have the
same objects as Cat and its morphism sets are the equivalence classes described above. Then Ho(Cat) ∼=
Cat[W−1].

Proof. The category generated by one isomorphism 1
∼−→ 2 is denoted by Ī . We write the functor category

of D over Ī as DĪ . It’s enough to prove for any functor F : Cat → E taking categorical equivalences to
isomorphisms, if there is a natural isomorphism between functors τ : G

∼⇒ H where G,H ∈ HomCat(C,D),
then F(G) = F(H).

DĪ

C D ×D D

D

pτ

(G,H) ∆

s∼

where τ : a 7→ (τa : G(a)
∼−→ H(a)), p : (x ∼−→ y) 7→ (x, y), ∆(x) = (x, x) and s : x→ (idx : x

∼−→ x). Note s is
actually a categorical equivalence. Obviously it’s fully faithful. For any y ∼−→ y′ in DĪ

y y

y y′

∼

∼
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We see s is also essentially surjective hence a categorical equivalence. Then F(s) is an isomorphism. We are
done.

Remark A.0.6. Note that the localization of categories often cause set theoretic problems, which means the
morphism set of C[W−1] may be a proper class. Example A.0.5 is a special case since the morphism set of
Ho(Cat) is small. Actually Cat is a model category and the localization of model categories with respect
to weak equivalences will not cause this set theoretic problem. What’s more apart from the technique of
model categories, there is a useful technique to solve this set theoretic problem as well which is actually
earlier than Quillen’s work and whose motivation coming from the localization of non-commutative rings
is more natural. Such technique is called calculus of fractions. Details can be found in [21, Chapter 1] or any
text book about derived categories.

Next to talk about model categories, let us begin with the factorization system first.

A.1 Factorization Systems

In a category C, let i : A→ B and p : X → Y be two morphisms in it. We say i has the left lifting property with
respect to (LLP wrt) p or p has the right lifting property with respect to (RLP wrt) i if for any commutative
diagram

A X

B Y

i p

there exists h : B → X making the new diagram commutative. If F is a class of morphisms in C, we use
l(F) (resp. r(F)) to denotes the class of morphisms having the LLP (resp. RLP) wrt all morphisms in F . 21

If we have two classes F , G of morphisms such that every map in F has the LLP wrt all maps in G, then we
write F � G. This symbol comes from [55].

Definition A.1.1. In a category C, we say f : X → X ′ is a retract of g : Y → Y ′ if there is the following
comutative diagram:

X Y X

X ′ Y ′ X ′

i

f

idX

r

g f

i′

idX′

r′

such that r ◦ i = idX , r
′ ◦ i′ = idX′ .

Lemma A.1.2. In a category C, if f : X → Y can be factored as f = p ◦ i where f has the RLP (resp. LLP) wrt i
(resp. p), then f is a retract of p (resp. i).

X Y

Z

f

i p

21In different textbooks, notations of l(F) and r(F) are different (see [14], [31]] and [55]). Here we follow [14] since we think his
notations are the simplest.
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Proof. We only need to assume f ∈ r(i), since on the other hand we can deal with this problem in Cop.

X X

Z Y

i f

p

h

This diagram above implies

X Z X

Y Y Y

i

f

idX

h

p f

Now we want to talk about properties of l(F).
Definition A.1.3. A class of morphisms F is closed under pushouts if given any pushout diagram,

X X ′

Y Y ′

f f ′

that f ∈ F implies f ′ ∈ F ; it’s closed under retraction if in the diagram of Definition A.1.1, that g ∈ F
implies f ∈ F ; it’s closed under coproducts if given fi : Xi → Yi belonging to F for i ∈ I , then so does∐

i∈I
fi :

∐
i∈I
Xi →

∐
Yi

i∈I

F is closed under transfinite compositions if for every well-ordered set I with the initial element 0, for
any functor X : I → C such that for any element i ∈ I, i ̸= 0, the colimit colim

j<i
X(j) exists and the induced

map
colim
j<i

X(j)→ X(i)

is in F , then the colimit colim
i∈I

X(i) exists and the morphism X(0)→ colim
i∈I

X(i) belongs to F .

The class of morphisms satisfying properties above is called saturated.

Remark A.1.4. Actually given a class of morphisms F , if it’s closed under pushouts and transfinite compo-
sitions, then it will also be closed under coproducts.

Proof. Suppose there are morphisms fi : Xi → Yi belonging to F for i ∈ I . From the well-ordering axiom,
we may assume I is well-ordered and 0 is its initial element. Firstly, we have a pushout diagram

X0

∐
i∈I
Xi

Y0 Z0

f0

where Z0 is actually Y0
∐

i∈I\0
Xi. If 1 is the successor of 0, then we have the pushout

X1 Z0

Y1 Z1

f1
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where X1 → Z0 is just X1 →
∐
i∈I
Xi → Z0. For a limit number i, we let Zi be the following poushout

Xi colim
j<i

Zj

Yi Zi

fi

Since F is closed under pushouts,
∐
i∈I
Xi → Z0, Z0 → Z1 and colim

j<i
Zj → Zi all belong to F . Note that

colim
j<i

Zj is actually (
∐
j<i

Yj)
∐
(
∐
i′≥i

Xi′). Finally we see colim
i∈I

Zi =
∐
i∈I
Yi, which can also be proved by the

universal property of coproducts of Yi’s. Then that F is closed under transfinite compositions implies∐
Xi

i∈I
→

∐
Yi

i∈I
is in F .

Theorem A.1.5. In a category C, for any class of morphisms F , l(F) is saturated.

Proof. From Remark A.1.4 we only to check l(F) is closed under retraction, pushouts and transfinite com-
positions.

Step 1 (retraction). If f is the retraction of g where g ∈ lF , given any p : A→ B belonging to F

X Y X A

X ′ Y ′ X ′ B

i

f

idX

r

g f

α

p

i′

idX′

r′

θ

β

Then there will be a lifting θ : Y ′ → A and θ ◦ i′ will give the solution of the lifting problem

X A

X ′ B

f

α

p

β

Hence f ∈ l(F).
Step 2 (pushouts). Look at the pushout diagram in Definition A.1.3 where f ∈ l(F) and f ′ is the pushout

of f . Also given the lifting problem above

X ′ X A

Y ′ Y B

f ′ f

α

pθ

β

µ

θ is induced by f . Using the universal property of pushouts, we see the solution µ exists.
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Step 3 (transfinite compositions). If 1 is the successor of 0,

X0 A

X1

...

colimXi
i∈I

B

p

the lifting respect to X0 → X1 exists. Especially for any Xi → Xi+1 where i+ 1 is the the successor of i, the
lifting Xi+1 → A exists. If i is a limit number, then from the univsersal property of colimits we see there
will exist colim

j<i
Xj → A. And then since colim

j<i
Xj → Xi belongs to l(F), the lifting Xi → A exists. Finally

there will be some colim
i∈I

Xi → A making the diagram commutative.

Corollary A.1.6. In a category C, for any class of morphisms F , r(F) is closed under retraction, pullbacks, products
and the dual process of transfinite compositions especially finite compositions.

Proof. Apply Theorem A.1.5 to Cop.

Fact A.1.7. In a category C there are two classes of morphisms F and F ′, then
(1) F ⊆ r(F ′)⇔ F ′ ⊆ l(F)
(2) F ⊆ F ′ ⇒ l(F ′) ⊆ lF .
(3) F ⊆ F ′ ⇒ r(F ′) ⊆ rF .
(4) r(F) = r ◦ l ◦ r(F).
(5) l(F) = l ◦ r ◦ l(F).

Proof. We only prove the property of (4). Since all morphisms inF have the LLP wrt r(F), thenF ⊆ l◦r(F).
This implies r ◦ l ◦ r(F) ⊆ r(F). Replacing F by r(F), we see it’s clear that r(F) ⊆ r ◦ l(r(F)).

Definition A.1.8. A weak factorization system in a category C is a couple (F ,G) of classes of morphisms
satisfying

(1) both F and G are closed under retraction.
(2) F ⊆ l(G)(⇔ G ⊆ r(F).
(3) any morphism f ∈ Mor(C) has a factorization f = p ◦ i where i ∈ F and p ∈ G.

In the most cases, we may require the factorization f = p ◦ i to be functorial and we will explain what’s
the meaning of functorial factorization system. In the factorization f = p ◦ i, we use Rf and Lf to denote p
and i respectively.

Definition A.1.9. In a category C, a functorial factorization system is a weak factorization system with a
functor C2 → C3 from the category of arrows in C to the category of composable pairs of arrows in C.

X A

Y B

f

α

g

β

7→

X A

Ef Eg

Y B

Lf

f

Lg

g

Rf

E(α,β)

Rg
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This definition actually means the replacement functors L and R are functorial. The reason why we
often require this property is practical. The method Quillen uses to construct a model category is called small
object arguments. From this method, we always obtain a functorial factorization system, since every step of
this method is functorial. Now let us introduce this method which can also be found in [14, Proposition
2.1.9], [31, Theorem 2.1.14] and [55, Theorem 12.2.2].

Definition A.1.10. Given a cardinal κ, a non-empty partially ordered set E is κ-filtered if for any family of
its elements xj indexed by J with |J | < κ, then there exists an element x ∈ E such that xj ≤ x for all j ∈ J .

Theorem A.1.11 (Small Object Argument). Let C be a locally small category with small colimits, equipped with a
small set of morphisms F . If there exists a cardinal κ such that for any element i : K → L in F , the functor

HomC(K,−) : C → Sets

commutes with colimits indexed by κ-filtered well-ordered sets, then the couple (l ◦ r(F), r(F)) forms a functorial
factorization system and l ◦ r(F) is the smallest saturated class containing F .

Proof. Suppose κ exists and λ ≥ κ. Given any morphism f : X → Y in Mor(C), letD0 be the class consisting
of all commutative diagrams

K X = Z0

L Y

i f=f0

with i ∈ F . Then let Z1 be the pushout of∐
D0

K X = Z0

∐
D0

L Z1

Y

f0

∃!
f1

If i + 1 is the successor of i, using this method to obtain Zi+1 and fi+1 : Zi+1 → Y from Zi and fi. If i is a
limit number, define Zi = colim

j<i
Zj and this will induce a morphism fi : Zi → Y from fj ’s. Finally we have

the following factorization

X = Z0 Z1 · · · Zi = colim
j<i

Zj · · · Zλ

Y

f0

g

f1 fi
fλ

We prove g ∈ l ◦ r(F) and fλ ∈ r(F).
Given a lifting problem

K Zλ

L Y

i fλ
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with i ∈ F . Since HomC(K,−) commutes with λ-colimits, K → Zλ = colim
j<λ

Zj factors through some Zi.

K Zi Zi+1 · · · Zλ

L Y

i
fi

fi+1
fλ

But from the definition of Zi+1, we see i : K → L here belongs to Di, which means there exists a lifting
L→ Zi+1 whose composition with Zi+1 → Zλ gives the lifting L→ Zλ.

Next we should prove g ∈ l ◦ r(F). It’s obvious to see F ⊆ l ◦ r(F). From Theorem A.1.5,l ◦ r(F) is
saturated. But g : X → Zλ is obtained by “attaching cells” of

∐
Di

K →
∐
Di

L. Therefore it’s clear g ∈ l ◦ r(F).

The statements in the previous paragraph obviously imply that the smallest saturated class of F is
contained in l ◦ r(F). On the other hand, assume f : X → Y belonging to l ◦ r(F), then f = p ◦ i where
i ∈ l ◦ r(F) and p ◦ r(F) which we haved proved above. Note that from the proof, i is in the smallest
saturated class of F . Since f has the LLP wrt p, from Lemma A.1.2 f is a retract of i hence belonging to the
smallest saturated class of F by Definition A.1.3.

Finally we should prove this factorization talked above is functorial. Given a commutative diagram

X X ′

Y Y ′

f f ′

then we have classed D0 and D′0 for f and f ′ respectively. But it’s clear there is a map D0 → D′0 via
compositions and this will induce a map Z1 → Z ′1. And finally we will obtain Zλ → Z ′λ. Since in every
step of this process the morphism is induced by the universal property, it’s clear the final map Zλ → Z ′λ is
functorial.

Now let us introduce the concept of model categories.

Definition A.1.12. A model categoryM has three classes of morphisms which are denoted by Cof , Fib and
W , and are called cofibtrations, fibrations and weak equivalences respectively. Moreover it satisfies the
following axioms

(M1) M has all finite limits and colimits.

(M2) In the commutative diagram:

X Y

Z
h

f

g

If any two of the three morphisms f, g and h = g ◦ f are weak equivalences, then so is the other. This
property is called “two out of three”.

(M3) Cof, F ib andW are closed under retraction.

(M4) Cof � (Fib ∩W) and (Cof ∩W) � Fib.

(M5) Every morphism f : X → Y inM can be factored as f = p ◦ i = q ◦ j such that i ∈ Cof ∩W , p ∈ Fib,
j ∈ Cof and q ∈ Fib ∩W .
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Note that axioms (M4) and (M5) actually mean (Cof, F ib ∩ W) and (Cof ∩ W, F ib) form two weak
factorization systems. Morphisms in Cof ∩ W (resp. Fib ∩ W) are called trivial cofibrations (resp. trivial
fibrations). In a model category we use ∅ and ∗ to denote its initial object and terminal object respectively.
An object X ∈ M is cofibrant (resp. fibrant) if ∅ → X (resp. X → ∗) is a cofibration (resp. fibration).
Sometimes we write • ∼−→ • for a weak equivalence, •↣ • for a cofibration and •↠ • for a fibration.

Example A.1.13. Ch≥0(R) denotes the full subcategory of Ch(R) consisting of all complexes of left R-
modules such that Cn = 0 for n < 0. Then Ch≥0(R) is a model category. Actually Ch(R) is also a model
category whose structure is similar to the former.

f : C• → D• in Ch≥0(R) is a weak equivalence (also called quasi-isomorphism) if it is a homology
isomorphism which means it induces isomorphisms between homology groups. f is a fibration if fn :
Cn → Dn for n > 0 are all surjective. Then cofibrations in Ch≥0(R) can be defined as those maps having
the LLP wrt all trivial fibrations. In Ch≥0(R) a complex is cofibrant if and only if all modules in it are
projective.

Dually in the category of cochains Ch≥0(R) there is a model category structure as well, in which weak
equivalences are quasi-isomorphisms, cofibrations are monomorphisms for positive terms and fibrations
are epimorphisms whose kernels consist of injective modules.

Therefore there are two model structures in Ch(R). One is the projective model structure and the other
is the injecture one. In the projective model category of Ch(R), weak equivalences are quasi -isomorphisms,
fibrations are epimorphisms and cofibrations are those maps having the left lifting property with respect
to all trivial fibrations. Note that in this case even though for every cofibrant chain complex A•, An will
be a projective R-module for all n and conversely any bounded below complex of projective R-modules is
cofibrant, there may exist unbounded complex of projective R-modules, which isn’t cofibrant [31, Remark
2.3.7].

Example A.1.14. The category Top of topological spaces is a model category with weak equivalences being
weak homotopy equivalences which induce isomorphisms on homotopy groups, fibrations being Serre fibra-
tions and cofibrations being those having the LLP wrt all trivial fibrations. Every relative CW-complex will
be a cofibration. Details can be found in [52] or [33, Lecture 02].

Example A.1.15. Objects in the category ∆ consist of all [n] for n ≥ 0 where [n] = {0, 1, · · · , n}. And
morphisms are non-decreasing functions. A simplicial object of a category C is defined to be a functor
∆op → C. Therefore a simplicial set is a functor ∆op → Set. The category of simplicial sets is denoted
by sSet = Set∆

op

. sSet is a model category with weak equivalences being morphisms which induce weak
homotopy equivalences at the level of geometric realization, fibrations being Kan fibrations and cofibrations
being injective maps. For detailed references we recommend [14] and [23].

A model category is cofibrantly generated if its factorization systems are obtained by applying small
object argument to some small set of cofibrations and trivial cofibrations. All examples above are cofibrantly
generated.

A.2 Homotopy Theory

Before introducing the homotopy theory for a model categoryM, we want to study the internal structure
ofM first.

Lemma A.2.1. For a weak factorization system (see Definition A.1.8) (F ,G), F = l(G) and G = r(F).

Proof. We only need to prove F = l(G) since the other can be proved in the opposite category Cop. Assume
f ∈ l(G) and f = p ◦ i where i ∈ F , p ∈ G. f has the LLP wrt p and from Lemma A.1.2 we conclude f is a
retraction of i which means f ∈ F .

Corollary A.2.2. In a model categoryM,

(1) the cofibrations are exactly those maps having the LLP wrt all trivial fibrations
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(2) the trivial cofibrations are exactly those maps having the LLP wrt all fibrations

(3) the fibrations are exactly those maps having the RLP wrt all trivial cofibrations

(4) the trivial fibrations are exactly those maps having the RLP wrt all cofibrations

Proof. Apply Lemma A.2.1.

This corollary means for a given category M if a certain model category structure exists, then it can
be characterized byW and Fib orW and Cof . But if we only know Cof and Fib, then we will also know
Cof ∩ W and Fib ∩ W which are characterized by their lifting properties. And we can define a weak
equivalence to be a composition p ◦ i where i ∈ Cof ∩ W and p ∈ Fib ∩ W . Therefore M can also be
determined by Cof and Fib. There is a refined version for Corollary A.2.2.

Proposition A.2.3. In a model categoryM,

(1) a cofibration is a weak equivalence iff it has the LLP wrt all fibrations between fibrant objects

(2) a fibration is a weak equivalence iff it has the RLP wrt all cofibrations between cofibrant objects.

Proof. We only prove (1) since the second one can be proved inMop. “⇒” is clear and thus we prove the
part of “⇐”. Assume a cofibration u : A → B has the LLP wrt all fibrations between fibrant objects. First
we choose a fibrant replacement j : B → B′ where j is a trivial cofibration and B′ is fibrant. Then we factor
j ◦ u as

j ◦ u : A
i−→ A′

p−→ B′

where i is a trivial cofibration and p is fibration which imply A is especially fibrant. Then we have the
square

A A′

B B′

u

i

p

j

h

h ◦ u = i and p ◦ h = j are all isomorphisms in the homotopy category Ho(M). Hence in Ho(M), h has
a left inverse and a right inverse, thus an isomorphism. Then according to Corollary A.2.23, h is a weak
equivalence and therefore u is a weak equivalence.

We also has another characterization forM which is useful when comparing with different models for
∞-category. We advise readers to read this proposition after reading all contents of this section, since in
this proof we will use theorems below freely.

Proposition A.2.4. For a model categoryM, its model category structure is determined by cofibrations and fibrant
objects or fibrations and cofibrant object.

Proof. Since two statements are dual, it’s enough to prove the first one. For any object X ∈ Ob(M), we
have the decomposition ∅ → X ′

pX−−→ X where X ′ is cofibrant and pX is a trivial fibration. For any map
u : X → Y we have the square

∅ Y ′

X ′ Y

pY

u◦pX

u′

which permits the existence of the diagram

X ′ X

Y ′ Y

u′

pX

u

pY
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Note that u is weak equivalence iff u′ is a weak equivalence. Therefore weak equivalences between cofibrant
objects will determine this model category structure, since from Cof we know Fib ∩W and pX , pY are all
trivial fibrations. u′ is a weak equivalence iff it’s an isomorphism in Ho(M). By Yoneda’s lemma, it’s a weak
equivalences iff for any other object A, u

′∗ : HomHo(M)(Y
′, A)→ HomHo(M)(X

′, A) is an isomorphism. But
the full subcategory of Ho(M) consisting of fibrant objects is equivalent to Ho(M). Therefore we could
suppose A is fibrant. But by Propodition A.2.18 this means

HomHo(M)(X
′, A) = [X ′, A] = HomM(X ′, A)/ ∼

where the equivalence relation is right homotopy or left homotopy. Here we focus on the left homotopy.
But we can factor (id, id) : X ′

∐
X ′ → X ′ as

X ′
∐

X ′
i−→ X ′ ⊗ I p−→ X ′

where i is a cofibration and p is a trivial fibration. This factorization will make the cylinder object X ′ ⊗ I
for the left homotopy relation fixed, which means this left homotopy relation is totally determined by
cofibraions and trivial fibrations. Hence we conclude HomHo(M)(X

′, A) is determined. And finally weak
equivalences between cofibrant objects are determined.

For a model categoryM, its homotopy theory or homotopy category is defined to be Ho(M) :=M[W−1] the
localization respect to weak equivalences. In the following our main task is to study structures of Ho(M)
in detail.

Definition A.2.5. A path object for Y ∈ Ob(M) is a commutative diagram:

Y I

Y Y × Y

p=(p0,p1)

∆

s ∼

where s is a weak equivalence, ∆ = (idY , idY ) and (p0, p1) is a fibration.

Always we simply use the symbol Y I to denote a path object. According to the axiom (M5) of model
categories, there is a natural path object for Y such that s will be a trivial cofibration.

Definition A.2.6. f, g : X → Y are two maps inM. A right homotopy between f and g is a commutative
diagram:

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

The right part of the diagram above is a path object. We denote this relation by f ≃r g.

Example A.2.7. In Ch≥0(R), the concept of chain homotopies is a special case of right homotopies.
Given a chain complex C , the path object is defined to be CI such that CIn = Cn ⊕Cn ⊕Cn+1 for n > 0

and
CI0 = {(x, y, z) ∈ C0 ⊕ C0 ⊕ C1|(x− y) + ∂1(z) = 0}

∂n(x, y, z) = (∂n(x), ∂n(y), (−1)n(x− y) + ∂n+1(z)). We claim CI is a path object.
We define a new chain complex C ′ as follows: C ′n = Cn ⊕ Cn+1 for n > 0 and

C ′0 = {(x, z) ∈ C0 ⊕ C1|x+ ∂1(z) = 0}

∂n(x, z) = (∂n(x), (−1)nx + ∂n+1(z)). If ∂n(x, z) = 0, then ∂n(x) = 0 and (−1)nx + ∂n+1(z) = 0. x =
(−1)n+1∂n+1(z), ∂n+1((−1)n+1, 0) = ((−1)n+1∂n+1z, (−1)n+1(−1)n+1z) = (x, z). Hence, C ′ → 0 is a trivial
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fibration. There is a chain map α : CI → C ′, α(x, y, z) = (x−y, z), which is an epimorphism and ker α ∼= C·
. Then we have the following pullback diagram:

CI C ′

C ⊕ C C

α

p p′

β

where p(x, y, z) = (x, y), p′(x, z) = x and β(x, y) = x − y. Obviously p′ is a fibration. Hence p is also a
fibration. We have two exact sequences

0 C CI C ′ 0

0 C C ⊕ C C 0

s

id

α

p p′

∆ β

where s(x) = (x, x, 0). There is a long exact sequence

· · · −→ 0 = Hn+1(C
′) −→ Hn(C) −→ Hn(C

I) −→ 0 = Hn(C
′) −→ · · ·

Hence Hn(C) ∼= Hn(C) and s is a weak equivalence.
For any two chain map f, g : D → C such that there is a usual chain homotopy t : f ≃ g, tn : Dn → Cn+1

and ∂n+1tn + tn−1∂n = f − g. We define h : C → CI , hn(x) = (fn(x), gn(x), (−1)n+1tn(x)). It’s actually a
chain map. ∂h(x) = (∂f(x), ∂g(x), (−1)n+1(f(x) − g(x)) + (−1)n+1∂t(x)) = (∂f(x), ∂g(x), (−1)nt∂(x)) =
h∂(x). p ◦ h = (f, g). Hence, h is a right homotopy from f to g.

Conversely, if h is a right homotopy from f to g, we write h as (f, g, t). Because h is a chain map,
(−1)n(f(x) − g(x)) + ∂t(x) = t∂(x). Then t′n = (−1)n+1tn is a chain homotopy from f to g in the usual
sense.

Definition A.2.8. A cylinder object for X ∈M is a commutative diagram:

X
∐
X X

X ⊗ I

∇

(i0,i1) σ∼

where ∇ = (idX , idX), i is a cofibration and s is a weak equivalence. For any maps f, g : X → Y , a left
homotopy h : f ≃l g is defined to be the following commutative diagram:

Y X
∐
X X

X ⊗ I

(f,g)

i

∇

h
σ∼

In Top for CW-complexes, the concept of homotopies is a special case of left homotopies.

Example A.2.9. We assume X is a CW-complex and X ⊗ I = X × I where I = [0, 1]. Then X is a strong
deformation retract of X × I and σ is especially a weak homotopy equivalence. (X

∐
X,X × I) is a relative

CW-complex (see [27, Theorem A.6]). Hence i : X
∐
X ↪→ X × I is a cofibration.

Lemma A.2.10. LetM be a model category,

(1) if Y is fibrant, then the relation of right homotopies in HomM(X,Y ) is an equivalence relation.

(2) if X is cofibrant, then the relation of left homotopies in HomM(X,Y ) is an equivalence relation.
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Proof. Axioms of a model category are all dual descriptions, which means Mop is also a model category
with cofibrations becoming fibrations and fibrations becoming cofibrations. Hence we can just prove the
first statement.

Assume Y is fibrant, which means Y → ∗ is a fibration. InM , for any object X , X × ∗ is canonically
isomorphic withX . Isomorphisms are both trivial cofibrations and trivial fibrations. Then the fact fibrations
are preserved under products impliesX×Y → X is a fibration. Hence pr0, pr1 : Y ×Y → Y are fibratsions.
For any path object Y I with a fibration p : Y I → Y × Y , pi = pri ◦ p is a fibration for i = 0, 1. Moreover,
p ◦ s = ∆, pi ◦ s = pri ◦∆ = idY . Then pi is a trivial fibration.

For any f : X → Y , the following diagram proves f ≃r f .

Y I

X Y Y × Y

p

f

s◦f s
∼

∆

For any map f, g : X → Y and h : f ≃r g. There is an isomorphism u = (pr1, pr0) : Y × Y → Y × Y .
If p : Y I → Y × Y is the path object for the right homotopy h : f ≃r g, then u ◦ p is the path object for
h : g ≃r f .

f1, f2, f3 : X → Y and h1 : f1 ≃r f2 , h2 : f2 ≃r f3.

Y I

X Y × Y Y

p

(f1,f2)

h1

∆

s∼

Y J

X Y × Y Y

q

(f2,f3)

h2

∆

s′∼

We prove there is a right homotopy:

Y I ×Y Y J

X Y × Y Y

g

(f1,f3)

h

∆

s′′∼

From h1, h2 we know p0h1 = f1, p1h1 = f2 = q0h2, q1h2 = f3. Then we have the following pullback
diagram:

X

Y I ×Y Y J Y J

Y I Y

h

h2

h1 q∗

p∗

q0

p1

where q0 is a trivial fibration⇒ q∗ is also a trivial fibration.

Y

Y I ×Y Y J Y J

Y I Y

s′′

s′

s q∗

p∗

q0

p1
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q∗ ◦ s′′ = s is a weak equivalence⇒ s′′ is a weak equivalence. Now we only need to find the suitable g. We
prove the following diagram is a pullback:

Y I ×Y Y J Y J

Y I × Y Y × Y

(q∗,q1p∗)

p∗

(q0,q1)

p1×idY

(p1 × idY ) ◦ (q∗, q1p∗) = (p1q∗, q1p∗) = (q0p∗, q1p∗) = (q0, q1) ◦ p∗. The diagram is commutative. Given
(u, v) : Z → Y I × Y,w : Z → Y J such that (p1 × idY ) ◦ (u, v) = (q0, q1) ◦ w. Then p1u = q0w, v = q1w.
From p1u = q0w, there is a unique θ : Z → Y I ×Y Y J such that q∗θ = u, p∗θ = w. q1p∗θ = q1w = v. Hence,
(q∗, q1p∗) ◦ θ = (u, v). This proves the diagram above is actually a pullback.

We let g = (p0 × idY ) ◦ (q∗, q1p∗) = (p0q∗, q1p∗). (q∗, q1p∗) is the pullback of q = (q0, q1)⇒ (q∗, q1p∗) is a
fibration. p0, idY are fibrations⇒ p0 × idY is a fibration. Hence g is a fibration.

g ◦ h = (p0q∗, q1p∗) ◦ h = (p0q∗h, q1p∗h) = (p0h1, q1h2) = (f1, f3) and g ◦ s′′ = (p0q∗, q1p∗)s
′′ =

(p0q∗s
′′, q1p∗s

′′) = (p0s, q1s
′) = (idY , idY ) = ∆.

Lemma A.2.11.
(1) If Y is fibrant, X ⊗ I is a fixed cylinder object for X and f, g : X → Y are right homotopic, then there is a left

homotopy:

Y X
∐
X

X ⊗ I

(f,g)

iH

(2) If X is cofibrant, Y I is a fixed path object for Y , and f, g : X → Y are left homotopic, then there is a right
homotopy:

Y I

X Y × Y

p

(f,g)

H

Proof. The two statements are dual and we prove the first one. Given the right homotopy h : f ≃r g :

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

and the fixed cylinder object:

X
∐
X X

X ⊗ I

∇

i σ∼

Note that Y is fibrant⇒ p0 : Y × Y → Y is a trivial fibration.

X
∐
X Y I Y

X ⊗ I Y

(sf,h)

i p0

p1

fσ

θ

p0 ◦ (sf, h) = (p0sf, p0h) = (f, f) = fσi. LetH = p1 ◦θ. H ◦ i = p1θi = p1 ◦ (sf, h) = (p1sf, p1h) = (f, g).
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Corollary A.2.12. If X is cofibrant and Y is fibrant, then for any maps f, g : X → Y , f ≃r g⇔ f ≃l g for a fixed
X ⊗ I ⇔ f ≃r g for a fixed Y I ⇔ f ≃l g.

In HomM(X,Y ) where X is cofibrant and Y is fibrant, the two notions of right homotopy and left
homotopy coincide and we simply use the symbol f ≃ g to denote this homotopy relation. The homotopy
class of maps between X and Y is denoted by [X,Y ] = HomM(X,Y )/ ∼. If Mc and Mf are the full
subcategories ofM with all objects cofibrant and fibrant respectively, then we can define a functor [−,−] :
Mop

c × Mf → Set. The fact that [−,−] is well defined and actually a functor can be proved using the
following lemma.

Lemma A.2.13. For any objects X,Y ∈ Ob(M) and morphisms f, g : X → Y ,

(1) if f ≃l g then for any morphism t : Y → Y ′, tf ≃l tg.

(2) if f ≃r g then for any morphism s : X ′ → X , fs ≃r gs.

This lemma is trivial. In general, given two arbitrary morphisms f, g : X → Y and t : Y → Y ′, we can’t
conclude tf ≃r tg from f ≃r g. But there is a weaker theorem, which states that inMf , f ≃r g, for arbitrary
t : Y → Y ′ there exsits a trivial fibration especially a weak equivalence u : X ′ → X such that tfu ≃r tgu.

Lemma A.2.14. For any objects X,Y ∈ Ob(M) and morphisms f, g : X → Y ,

(1) if Y is fibrant and f ≃l g, then for any morphism s : X ′ → X , fs ≃l gs.
(2) if X is cofibrant and f ≃r g then for any morphism t : Y → Y ′, tf ≃r tg.

Proof. We only prove (2). Given a right homotopy h′ : f ≃r g,

Y I
′

X Y × Y Y

p′

(f,g)

h′

∆

s′∼

Decompose s′ as
Y

s−→ Y I
p−→ Y I

′

such that s is trivial cofibration and p is a fibration. p′ ◦ p is a fibration and Y I is thus a path object. Since
p ◦ s = s′ is a weak equivalence, p is a trivial fibration. Then the following lifting problem has a solution
since X is cofibrant.

∅ Y I

X Y I
′

p

h′

h

Then h : f ≃r g with the map s : Y → Y I being a trivial cofibration. Here we simply write p : Y I → Y × Y
for p′ ◦ p above and use p′, s′ to denote maps Y

′I → Y ′ × Y ′ and Y ′ → Y
′I respectively.

Y Y
′I

X Y I Y ′ × Y ′
s

s′t

p′

h (t,t)◦p

k

k ◦ h : tf ≃r tg.

For any two objectsX, Y ∈ Ob(M), πl(X,Y ) (resp. πr(X,Y )) denotes the quotient set Hom)M(X,Y )/ ∼
where the equivalence relation is generated by left (resp. right) homotopy. f ∼l g in HomM(X,Y ) if there
is a long sequence of left homotopy connecting them, which means f ≃l f1 ≃l f2 ≃l · · · ≃l g.
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Corollary A.2.15. For any objects X,Y ∈ Ob(M) and morphisms f, g : X → Y ,
(1) if Y is fibrant, then the composition πl(X ′, X)× πl(X,Y )→ πl(X ′, Y ) is well defined.
(2) if X is cofibrant, then the composition πr(X,Y )× πr(Y, Y ′)→ πr(X,Y ′) is well defined.

We can define the homotopy category πMc (resp. πMf ) to be the quotient category of Mc (resp.
Mf ) where the equivalence relation is the right (resp. left) homotopy relation and HomπMc

(X,Y ) =
πr(X,Y ). Then from Corollary A.2.15 this definition is well defined. πMcf is in the usual sense with
HomπMcf

(X,Y ) = [X,Y ] since X, Y are both cofibrant and fibrant.
Next we prove the modern version of Whitehead’s theorem whose classical version says a weak homo-

topy equivalence between CW-complexes is homotopy equivalence.

Theorem A.2.16 (Whitehead). If X,Y are both cofibrant and fibrant, then every weak equivalence f : X → Y is a
homotopy equivalence.

Proof. According to (M5) of model categories, f : X
i−→ Z

p−→ Y where i is a trivial cofibration and p is
trivial fibration. We prove Z is both cofibrant and fibrant first.

Let A→ B be a trivial cofibration:

A Z Y

B ∗ ∗

p

where Y is fibrant and p is trivial fibration. Hence Z is fibrant. Dually, Z is cofibrant.
If p and i are homotopy equivalences, there are q : Y → Z, j : Z → X such that pq ≃ idY , qp ≃ idZ , ij ≃

idZ , ji ≃ idX . Then
fjq = pijq ≃ pidZq ≃ pq ≃ idY

and
jqf = jqpi ≃ jidZi ≃ ji ≃ idX

which means f is a homotopy equivalence as well. Now we need to prove every trivial fibration is a
homotopy equivalence and it’s dual to prove every trivial cofibration is a homotopy equivalence. Hence
we can just assume f is a trivial fibration.

Since Y is cofibrant,
∅ X

Y Y

f

idY

g

then fg = idY , and we only need to prove gf ≃ idX .
Given a cylinder object,

X
∐
X X

X ⊗ I

∇

i σ∼

there exists the following homotopy h : gf ≃l idX since f is a trivial fibration and i is cofibration.

X
∐
X X

X ⊗ I Y

i

(gf,idX)

f

fσ

h

where f ◦ (gf, idX) = (fgf, g) = (f, f) = fσi.
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In Top every space is fibrant and every CW-complex is cofibrant. Hence the classical Whitehead’s
theorem tells us every weak homotopy equivalence between CW-complexes is actually a homotopy equiv-
alence. And in Ch≥0(R), every chain complex is fibrant and every chain complex with every term projective
is cofibrant. Then, we can conclude two projective resolutions of a given R-module is chain homotopic.

The converse of Whitehead’s theorem is also ture. If f is a homotopy equivalence then f is a weak
equivalence. We will prove it later.

Now for every object X inM, we find a suitable object RQX which is both cofibrant and fibrant and is
weak equivalent with X . At first, we use the axiom (M5) to decompose ∅ → X as ∅ −→ QX

pX−→ X such

that QX is cofibrant and pX is a trivial fibration. Then we decompose QX → ∗ as QX
jX−→ RQX −→ ∗

such that jX is a trivial cofibration and RQX is fibrant. In fact, because QX is cofibrant, RQX is cofibrant
automatically. Hence RQX is both cofibrant and fibrant.

According to the descriptions above, we can find maps X
pX←− QX

jX−→ RQX for every X ∈ M such
that:

(1) pX is a trivial fibration, jX is a trivial cofibration, QX is cofibrant and RQX is both cofibrant and
fibrant.

(2) if X is cofibrant, QX = X, pX = idX . And if QX is fibrant, RQX = QX, jX = idQX .

From the condition (2), we can concludeQ(RQX) = RQX ,Q(QX) = QX , (RQ)(RQX) = RQX , (RQ)(QX) =
RQX .

If in our model category the weak factorization system is functorial, then we can find functorial re-
placement functors Q and R. But without this assumption the functorial property is only up to homotopy.
Actually nearly all of model categories we meet are functorial and it’s difficult to give an example not being
functorial.

Lemma A.2.17. For any map f : X → Y , there will exist a commutative diagram:

X QX RQX

Y QY RQY

f

pX

f1

jX

f2

pY jY

Moreover f2 is unique up to homotopy.

Proof. Since QX is cofibrant and pY is a trivial fibration,

∅ QY

QX Y

pY

f◦pX

f1

Since RQY is fibrant and jX is a trivial cofibration,

QX RQY

RQX ∗

jX

jY ◦f1

f2

Now we prove the uniqueness. If there is another commutative diagram (f ′1, f
′
2), we first prove f1 ≃l f ′1.

Given a cylinder object

QX
∐
QX QX

QX ⊗ I

∇

I σ∼
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since i is a cofibration and pY is a trivial fibration,

QX
∐
QX QY RQY

QX ⊗ I QX Y

(f1,f
′
1)

i pY

jY

σ fpX

where pY ◦ (f1, f ′1) = (pY f1, pY f
′
1) = (fpX , fpX) = fpXσi. From f1 ≃l f ′1, we conclude jY f1 ≃l jY f ′1.

Hence f2jX ≃l f ′2jX . Since QX is cofibrant and RQY is fibrant, f2jX ≃r f ′2jX and we have the following
homotopy diagram:

RQY I

QX RQY ×RQY

ph

(f2jX ,f
′
2jX)

and since p is a fibration and jX is a trivial cofibration

QX RQY I

RQX RQY ×RQY

jX

h

pH

(f2,f
′
2)

Hence f2 ≃ f ′2 .

According to the Lemma A.2.17, we can define a functor RQ :M → πMcf such that X 7→ RQX and
f 7→ [RQf ] = [f2]. From the proof above we know that the functorQ :M→ πMc is also well defined, since
according to Lemma A.2.11 (2) the left homotopy f1 ≃l f ′1 can be changed into a right homotopy. Similarly
there is a functor R :M→ πMf as well. Therefore we say the factorization system in a model category is
functorial up to homotopy.

Now we can use the funtor RQ :M→ πMcf to obtain the homotopy category Ho(M) ofM. Objects
of Ho(M) are the same asM and

HomHo(M)(X,Y ) = HomπMcf
(RQX,RQY ) = [RQX,RQY ]

From the uniqueness of f2 up to homotopy, there is a functor

γ :M→ Ho(M), γ(X) = X, γ(f) = [RQf ] = [f2]

and the inclusion functor γ̄ : πMcf → Ho(M) is fully faithful and essentially surjective hence an equiva-
lence between categories.

What’s more, Whitehead’s theorem tells us that if f is weak equivalence, then γ(f) is an isomorphism.
In the following, we will prove γ is actually a localization functor and Ho(M) is the category of fractions of
M with respect to the setW of weak equivalences. Moreover γ(f) is an isomorphism if and only if f is a
weak equivalence.

Proposition A.2.18. If we assumeX is cofibrant and Y is fibrant, then there is a bijection [X,Y ] ∼= HomHo(M)(X,Y ) =
[RQX,RQY ].

Proof. Y is fibrant⇒ QY is fibrant. Then QX = X , RQX = RX , RQY = QY , pX = idX ,jY = idQY .
γ : HomM(X,Y ) → [RQX,RQY ] = [RX,QY ]. Given any map f2 : RX → QY , let f1 = f2 ◦ jX and

f = pY ◦ f1, then γ(f) = [f2] which means γ is surjective.
Next, we prove γ factors through [X,Y ]. If f, g : X → Y and f ≃ g, we prove f2 ≃ g2. Since X is

cofibrant and pY is a trivial fibration:
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∅ QY

X Y

pY

f/g

f1

g1

where f1, g1 are liftings of f, g respectively.
Given a left homotopy h : f ≃l g, we have a lifting

X
∐
X QY

X ⊗ I Y

i

(f1,g1)

pY

h

where h ◦ i = (f, g). Hence f1 ≃ g1. The same process will imply f2 ≃ f2. Then γ can be factored as

HomM(X,X) −→ [X,Y ]
γ′−→ [RQX,RQY ] = [RX,QY ]

Conversely if f2 ≃ g2, then f1 = f2 ◦ jX ≃ g2 ◦ jX = g1 and f = pY ◦ f1 ≃ pY g1 = g . Hence γ is a
bijection.

Theorem A.2.19. γ :M→ Ho(M) is the localization functor for the category of fractionsM[W−1], which means
for any functor F :M→D taking weak equivalences to isomorphisms, there exists a unique functor F∗ : Ho(M)→
D such that F∗ ◦ γ = F .

Proof. Assume f, g : X → Y in M, if f ≃r g or f ≃l g, then F (f) = F (g). The proofs are the same.
Hence we can just assume h : f ≃r g. s : Y → Y I is a weak equivalence hence F (s) an isomorphism.
pi ◦ s = idY ⇒ F (pi) = F (s)−1 and

f = p0 ◦ h, g = p1 ◦ h⇒ F (f) = F (g) = F (s)−1F (h)

On objectsF∗ is easily defined, for Ho(M) has the same objects asM. Now suppose [f ] ∈ HomHo(M)(X,Y ) =
[RQX,RQY ] where f : RQX → RQY .

X QX RQX

Y QY RQY

pX jX

f

pY jY

where pX , pY , jX , jY are all weak equivalences. Thus

F (X) F (QX) F (RQX)

F (Y ) F (QY ) F (RQY )

∼ ∼

F (f)

∼ ∼

We define
F∗([f ]) = F (pY ) ◦ F (jY )−1 ◦ F (f) ◦ F (jX) ◦ F (pX)−1

If [f ] = [g], f ≃ g then F (f) = F (g). Hence F∗ is well defined. It’s obvious to see F∗ is actually a functor.
Now we need to prove F∗ ◦ γ = F . Given a map f : X → Y , γ(f) = [RQf ] = [f2].

X QX RQX

Y QY RQY

f

pX

f1

jX

f2

pY jY
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Take F in this diagram and we obtain:

F (X) F (QX) F (RQX)

F (Y ) F (QY ) F (RQY )

F (f) F (f1)

∼ ∼

F (f2)

∼ ∼

It’s obvious to see F∗γ(f) = F∗([f2]) = F (f). Then we should prove F∗ is unique.
Given f : X → Y in Ho(M) that is [f ] ∈ [RQX,RQY ]. Since

RQ(QX) = RQX, RQ(RQX) = RQX

f can also represent an element of HomHo(M)(QX,QY ) and of HomHo(M)(RQX,RQY ). Consider the fol-
lowing diagram

QX Q(QX) = QX RQ(RQX) = RQX

X QX RQX

pX

id

id

jX

id

pX jX

Hence γ(pX) = [idRQX ].

QX QX RQX

RQX RQX RQX

jX

id

jX

jX

id

id id

Then γ(jX) = [idRQX ]. Therefore we have the following commutative diagram in the category Ho(M):

X QX RQX

Y QY RQY

[f ]

γ(pX) γ(jX)

[f ] [f ]

γ(pY ) γ(jY )

[f ] ∈ [RQX,RQY ], if f : RQX → RQY inM, then γ(f) = [f ]. F = F∗ ◦ γ forces

F∗([f ]) = F (pY ) ◦ F (jY )−1 ◦ F (f) ◦ F (jX) ◦ F (pX)−1

for [f ] : X → Y in Ho(M). Hence F∗ is unique.

We can also consider the localization forMc andMf with respect to weak equivalences, and it’s obvi-
ous to seeMc[W−1] (resp.Mc[W−1]) is equivalent to the full subcategory of Ho(M) consisting of cofibrant
objects (resp. fibrant objects), using the same method above. We can check the universal property of lo-
calization for subcategories Ho(Mc) and Ho(Mf ) of Ho(M) directly. Moreover due to the existence of the
factorization system inM, Ho(Mc) and Ho(Mf ) are all actually equivalent to Ho(W) [52, chapter 1, p1.13,
theorem 1]. Finally we have the following commutative diagram:

πMc Ho(Mc)

πMcf Ho(M)

πMf Ho(Mf )

γ̄c

∼=
γ̄

∼

γ̄f

∼=

Note that γ̄c (resp. γ̄f ) comes from the restriction of γ toMc (resp.M) and from the following lemma.
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Lemma A.2.20. Let F :M→D carry weak equivalences into isomorphisms. If f ≃l g or f ≃r then F (f) = F (g).

Proof. Since f ≃l g and f ≃r g are dual, we may assume f ≃l g. Let h : X ⊗ I → Y be the left homotopy of
f and g.

Y X
∐
X X

X ⊗ I

(f,g)

i

∇

h
σ∼

σ is a weak equivalence⇒ F (σ) is an isomorphism. Then for i0, i1 : X → X ⊗ I , F (i0) = F (i1) = F (σ)−1.
Hence

F (f) = F (h ◦ i1) = F (h) ◦ F (σ)−1 = F (g)

Finally we want prove for the localization functor γ :M→ Ho(M), if γ(f) is an isomorphism, then f is
a weak equivalence. Since homotopy equivalences are sent to isomorphisms via γ, this theorem will imply
every homotopy equivalence is a weak equivalence. We give a proof here following [56] which is different
from that in [52] and [23].

Lemma A.2.21. f, g : X → Y are arbitrary two maps inM. If f ≃r g or f ≃l g, then f is a weak equivalence iff g
is a weak equivalence.

Proof. Proofs for the two conditions are the same. Hence we assume f ≃r g and f is a weak equivalence.

Y I

X Y × Y Y

p

(f,g)

h

∆

s∼

In this diagram, pi is weak equivalence for i = 0, 1. f = p0 ◦ h⇒ h is a weak equivalence. Hence g = p1 ◦ h
is a weak equivalence.

Lemma A.2.22. If X,Y are both cofibrant and fibrant, f : X → Y inM such that γ(f) is an isomorphism, then f
is weak equivalence.

Proof. That γ(f) is an isomorphism means f is homotopy equivalence between X and Y . We decompose f

as X
j−→ Z

p−→ Y where j is a trivial cofibration, p is a fibration and Z is both cofibrant and fibrant. We
only need to prove p is a weak equivalence. Since f is a homotopy equivalence, there exists g : Y → X such
that gf ≃ idX , fg ≃ idY . If H : fg ≃ idY is the left homotopy for a cylinder object Y ⊗ I , then we have the
following diagram:

Y Y Z

Y Y ⊗ I Y

g

i0

j

p

i1

θ

H

where pjg = fg = Hi0, i0 is a trivial cofibration and p is a fibration.
We let k = θ ◦ i1 : Y → Z. pk = pθi1 = Hi1 = idY . θi0 = jg. Hence θ : jg ≃l k. According to

Whitehead’s theorem, j is a homotopy equivalence. Then there is the homotopy inverse q : Z → X such
that qj ≃ idX , jq ≃ idZ .

From
jq ≃ idZ , jg ≃ k, gf ≃ idX

we conclude
kp ≃ kpjq = kfq ≃ jgfq ≃ jq ≃ idZ
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Hence kp is a weak equivalence.

Z Z Z

Y Z Y

p

idZ

kp

idZ

p

k p

p is the retraction of kp. Hence p is a weak equivalence.

Corollary A.2.23. For any f : X → Y inM, if γ(f) is an isomorphism, then f is a weak equivalence.

Proof. That γ(f) is an isomorphism means f2 is a homotopy equivalence. According to the Lemma A.2.22,
f2 is a weak equivalence. Hence f is also a weak equivalence.

This corollary tells us that the class W of weak equivalences coincides with the class of morphisms
which are inverted by the functor γ : M → Ho(M). This fact tells us that in a model category weak
equivalences satisfy a property called two out of six, which is similar to the property called two out of three
appearing in the definition of model categories.

Corollary A.2.24. Given a commutative diagram

B

A D

C

g

hg

∼

gf

∼

f

h

If gf and hg are weak equivalences, then so are f, g, h, hgf .

Proof. Take the functor γ :M → Ho(M) to this diagram. γ(gf), γ(hg) are isomorphisms. Then γ(g) has a
right inverse γ(f) ◦ γ(gf)−1 and a left inverse γ(hg)−1 ◦ γ(h). Hence γ(g) is an isomorphism. The Corollary
A.2.23 tells us g will be a weak equivalence. Then f, h, hgf are all weak equivalences.

A.3 Derived Functors

Definition A.3.1. Let C be a model category with the localization functor γ : C → Ho(C) and a functor F :
C → D. The left derived functor of F is LF : Ho(C)→ D together with a natual transformation α : LF ◦γ ⇒ F
which turns LF into the right Kan extension along γ. Dually the right derived functor is the left Kan extension
with β : F ⇒ RF ◦ γ.

C D

Ho(C)

γ

F

LF

G

α

∃! θ

µ
C D

Ho(C)

γ

F

RF

G

β

∃! θ

µ

For the right Kan extension we mean given any other functor G : Ho(C) → D and a transformation µ :
G ◦ γ ⇒ F , there exists a unique transformation θ : G⇒ LF such that α ◦ θ = µ.

G ◦ γ(x) LF ◦ γ(x) F (x)
θγ(x) αx

µx

The left Kan extension is defined dually.
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Note that from the definition of derived functors, we see they are independent from model structures
on C and are only relative to its homotopy theory.

Lemma A.3.2 (Ken Brown). Suppose F : C →M is a functor from a mdoel category C to a categoryN with a class
of weak equivalences satisfying the two-of-three property.

(1). If F sends trivial cofibrations between cofibrant objects to weak equivalences then it sends weeak equivalences
between cofibrant objects to weak equivalences.

(2). If F sends trivial fibrations between fibrant objects to weak equivalences then it sends weeak equivalences be-
tween fibrant objects to weak equivalences.

Proof. Since the two statements are dual, we just prove the first one. Suppose f : A
∼−→ B is a weak

equivalence between cofibrant objects.

∅ A

B A
∐
B

C

B

iB

iA⌟

j

p

∼

f

∼

idB

In the diagram above there is a unique map (f, idB) : A
∐
B → B. We factor this map as p · j where j is

a cofibration and p is a tricial fibration. Note that C is cofibrant. By the two-of-three property j · iA and
j · iB are trivial cofibrations. F (idB) = F (p) · F (j · iB). Therefore F (p) is a weak equivalence in N . Then
F (f) = F (p) · F (j · iA) is a weak equivalence.

Proposition A.3.3. For any functor F : C → D sending trivial cofibrations between cofibrant objects to isomor-
phisms where C is a model category, the left derived functor (LF, α) exists which is absolute in the sense that given
any other functor G : D → E , (G · LF,Gα) is the left derived functor of G ◦ F .

There is a dual version of this proposition for right derived functors.

Proof. By Ken Brown’s lemma, F sends weak equivalences between cofibrant objects to isomorphisms.
Therefore the restriction of F to Cc factors as

Cc
γc−→ Ho(Cc)

Fc−→ D

But Ho(Cc) ∼= Ho(C). Then LF is defined to be Ho(C) Q−→
∼

Ho(Cc)
Fc−→ D where Q is obtained by choosing a

cofibrant replacementQX for allX ∈ Ob(C) with a trivial fibration αX : QX → X . Note that for f : X → Y
in Ho(C), Q(f) = α−1Y · f · αX .

C D

Ho(C)

γ

F

LF

Φ

α′

∃! θ

µ

We set α′X = F (αX) : F (QX) → F (X) and we need to prove α′ is actually a natural transformation first.
For any map f : X → Y there is a diagram

F (QX) F (X)

F (QY ) F (Y )

Fc(α
−1
Y fαX)

F (αY )

F (αX)

F (f)
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But since QX is cofibrant and αY is a trivial fibration, there will exist a morphism g : QX → QY satisfying
αY g = fαX . Therefore α−1Y fαX in Ho(Cc) admits a preimage g in Cc. Therefore Fc(α−1Y fαX) = F (g) and
the diagram above is commutative.

Next given any functor Φ : Ho(C → D) and a natural transformation µ : Φ ⇒ F ◦ γ we need to there is
a unique transformation θ : Φ⇒ Fc ◦Q satisfying µ = α′ ◦ θ.

Φ(X) Fc(QX) = F (QX) F (X)
θX F (αX)

µX

If X is cofibrant, F (αX) will be an isomorphism. Then θX = F (αX)−1 · µX is unique. And since Ho(Cc) is
equivalent to Ho(C), θ can be extended to be a unique natural transformation on Ho(C).

Finally for any other functor G : D → E , L(G ◦ F ) = (G ◦ F )c ◦Q = G ◦ Fc ◦Q = G ◦ LF .

Remark A.3.4. If we just deal with homotopical categories C and D, a functor F : C → D is said to be left
deformable if there exists a left deformation i.e. an endofunctor Q : C → C with a natural weak equivalence
Q idC

∼ such that on Q(C), F sends weak equivalences to weak equivalences. Then we will have the
left derived functor LF = F ◦Q [56, Theorem 4.1.7].

Definition A.3.5. Suppose C and D are two model categories. A Quillen adjunction is a pair of adjoint
functors F : C D : G such that F preserves cofibrations and G preserves fibrations.

Remark A.3.6. According to Corollary A.2.2 and the adjointness, the definition above is also equivalent to
saying F preserves cofibrations and trivial cofibrations or G preserves fibrations and trivial fibrations.

Corollary A.3.7. For any Quillen adjuncion F : C D : G the left derived functor LF and the right derived
functor RG exist. Moreover they form a pair of adjoint functors

LF : Ho(C) Ho(D) : RG

Proof. The existence is a direct consequence of the proposition above. Hence we only need to prove the
second part.

HomHo(D)(LFX, Y ) = HomHo(D)(FQX, Y )

= HomHo(D)(FQX,PY ), PY is the fibrant replacement
= HomD)(FQX,PY )/ ∼, Proposition A.2.18
= HomC(QX,GPY )/ ∼, Corollary A.2.12 and adjointness
= HomHo(C)(X,RGY )

A classical theorem for adjoint functors says the left (resp. right) adjoint functor preserves colimits
(resp. limits). There is a similar theorem for Quillen pairs and homotopy colimits (limits)22.

Theorem A.3.8. For any Quillen adjuncion F : C D : G the left (resp. right) derived functor LF (resp.
RG) preserves homotopy colimits (resp. limits).

22Details of homotopy colimits and limits containing the definition can be found in the next section.
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Proof. We only need to prove LF preserves homotopy colimits. For simplicity we suppose model categories
C and D are combinatorial and theorefore they admit injective and projective model structures on functor
categories23. 24

The Quillen pair (F,G) can induce a new Quillen pair F∗ : Cproj Dproj : G∗ where for any I-

indexed diagram X : I → C, F∗(X) = F ◦X . Let cons : C (resp. D)→ CI (resp. DI) be the constant functor.
Then we have

DI CI

D C

G∗

cons

G

cons

This means G∗ · cons = cons · G, which implies Ho(G∗) · Rcons = Ho(cons) · RG. For the constant functor,
Rcons = cons ·P is just the fibrant replacement. For any object Y of D, since PY is fibrant and G∗ preserves
fibrant objects, Ho(G∗) ·Rcons(Y ) and RG∗ ·Rcons(Y ) are canonically isomorphic on homotopy categories.
Similarly Ho(cons) · RG and Rcons · RG are canonically isomorphic as well. Therefore RG∗ · Rcons and
Rcons · RG are canonically isomorphic. Finally since Rcons is right adjoint to hocolim. passing to the left
adjoints, LF · hocolim and hocolim · LF are canonically isomorphic.

A.4 Homotopy Limits and Colimits

Definition A.4.1. Suppose I is a small category and C is a model category. Weak equivalences in CI are
objectwise weak equivalences. Then the homotopy colomit functor, if exists, is the left derived functor

hocolim := Lcolim : Ho(CI)→ Ho(C)

and the homotopy limit functor, if exists, is the right derived functor

holim := Rlim : Ho(CI)→ Ho(C)

Although the existence of derived functors are independent from model structures, in order to use
Proposition A.3.3 to compute homotopy limits and colimits we need to know some specific model structure
on CI . Since weak equivalences on CI are objectwise, it’s natural to ask whether there exists some model
structure on CI making cofibrations or fibrations objectwise.

Definition A.4.2. (1). The projective model structure on CI has weak equivalences and fibrations defined
objectwise.

(2). The injective model structure on CI has weak equivalences and cofibrations defined objectwise.

Theorem A.4.3. Fro any cocomplete cofibrantly generated model category C which permits the small object argument,
and any small category I , the functor category CI admits a projective model structure.

To prove this theorem we need some preparations. Let C be a cocomplete category. If X is an object of
C and S is a set, then we define X ⊗ S :=

∐
s∈S X . If S : I → Set is a functor, then we can define a functor

from I to C for any object X of C as follows

X ⊗ S : I → C, α 7→ X ⊗ Sα =
∐
s∈Sα

X

23See Remark A.4.5
24I think there is also a categorical proof using the universal property of Kan extensions for any functorial model category. But the

proof we discuss here is enough.
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For any map f : α→ β in I , we have Sf : Sα → Sβ

X ⊗ Sα =
∐
Sα
X X ⊗ Sβ =

∐
Sβ
X

Xs∈Sα XSf (s)∈SβidX

∃!

This induces a map X ⊗ Sα → X ⊗ Sβ . Therefore X ⊗ S is actually a functor.
If S = HomI(α,−), then X ⊗ Sβ =

∐
HomI(α,β)

X . And

−⊗HomI(α,−) : C CI : evα

is an adjoint pair where evα(F ) = F (α). To prove

HomCI (X ⊗HomI(α,−), F ) ∼= HomC(X,F (α))

we see that a natural transformstion X ⊗HomI(α,−)→ F consists of maps X ⊗HomI(α, β)→ F (β) for all
β ∈ Ob(I) such that for any map f : β → γ in I , the following diagram is commutative∐

HomI(α,β)
X F (β)

∐
HomI(α,γ)

X F (γ)

Ff

which is equivalent to saying for all µ : α→ β

Xµ → F (β)
Ff−−→ F (γ) = Xf ·µ → Fγ

But all of these are determined by the map Xidα
→ F (α) since for µ : α→ β

Xµ → F (β) = Xidα
→ F (α)

Fµ−−→ F (β)

Therefore the adjunctiojn above is proved.

Proof of Theorem A.4.3. Suppose K and J are the generating classes for cofibrations and trivial cofibrations
respectively in C. Using the adjunction

−⊗HomI(α,−) : C CI : evα

given the cardinal κ and an indexed diagram F : κ→ CI , then for any map k : X → Y in K we have

HomCI (X ⊗HomI(α,−), colimκFu) ∼= HomC(X, evα(colimκFu)), u ∈ κ
∼= HomC(X, colimκevαFu)
∼= colimκHomC(X, evαFu)
∼= colimκHomCI (X ⊗HomI(α,−), Fu)

Therefore the small object argument is valid for maps −⊗HomI(α,−)(K) and −⊗HomI(α,−)(J).
For the map k : X → Y , the map k ⊗HomI(α,−) actaully consists of maps∐

HomI(α,β)

k :
∐

HomI(α,β)

X →
∐

HomI(α,β)

Y
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for all β ∈ Ob(I). Since here α is an arbitrary object in I , the generating cofibrations and trivial cofibrations
in CI should be

KI = ∪α −⊗HomI(α,−)(K), and JI = ∪α −⊗HomI(α,−)(J)

respectively.
Since − ⊗ HomI(α,−) ⊣ evα, f ∈ r(− ⊗ HomI(α,−)(K)) if and only if evαf ∈ r(K). Hence (− ⊗

HomI(α,−)(K)) = ev−1α (r(K)). Then

r(KI) = ∩αr(−⊗HomI(α,−)(K)) = ∩αev−1α (r(K))

Given a map f in CI , f ∈ r(KI) iff for all α in I , evαf = fα ∈ r(K) which means fα is a trivial fibration
in C. Therefore r(KI) and r(JI) consist of objectwise trivial fibrations and fibrations respectively.

Let W be the class of objectwise weak equivalences in CI . Then we only need to show l ◦ r(JI) =
l ◦ r(KI) ∩W .

Suppose µ : F → G belongs to l ◦ r(JI), then µ has the LLP wrt all objectwise fibrations.

F • G
µ1

∈ l◦r(JI)
µ2

∈ r(JI)

µ

By Lemma A.1.2, µ will be the retract of µ1 ∈ l ◦ r(JI). But note that for j : X → Y ∈ J , it’s a trivial
cofibration in C. And since Cof ∩WC is saturated in C, in the process of small object argument (see Theorem
A.1.11) µ1 will finally be an objectwise trivial cofibration. Thus its retract µ will be an objectwise weak
equivalence.

Conversely if µ ∈ l◦r(KI)∩W . Factor µ as the same as above. Since µ1 is an objectwise trivial cofibration
and µ is an objectwise weak equivalence, µ2 will be an objectwise trivial fibration hence in r(KI). Then µ
will be the retract of µ1 in l ◦ r(JI).

There is an abstract summary of the method we used in the proof to promote a model structure on a
category to another category via an adjoint pair [24, Theorem 3.6].

Theorem A.4.4. Let F : C D : G be an adjoint pair and suppose C is a cofibrantly generated model cate-
gory. Let I and J be the sets of generating cofibrations and trivial cofibrations respectively. We define a map f in D
is a weak equivalence or a fibration if G(f) in C is a weak equivalence or a fibration. Then if the following conditions
satisfied,

(1). the right adjoint G commutes with sequential colimits;

(2). every map in D having the LLP wrt all fibrations is a weak equivalence;

then D will become a cofibrantly generated model category such that F (I) and F (J) generate its cofibrations and
trivial cofibrations respectively.

Remark A.4.5. Actually if C is a combinatorial mdoel category (locally presentable25 and cofibrantly generated)
then CI admits both projective and injective model structures [38, Proposition A.2.8.2]. And actually nearly
all of model categories we meet are combinatorial or Quillen equivalent to a combinatorial one.

Theorem A.4.6. Let C be a model category and I be a small category.

(1). Whenever the projective model structure on CI exists, then the homotopy colimit Lcolim : Ho(CI) → Ho(C)
exists and can be computed as the colimit of a projective cofibrant replacement of the original diagram.

(2). Whenever the injective model structure on CI exists, then the homotopy limit Rlim : Ho(CI) → Ho(C) exists
and can be computed as the limit of an injective fibrant replacement of the original diagram.

25There are many equivalent definitions of the property being locally presentable. An intuitive way is to use the concept of accessible
category. And another way is to define it as a full subcategory of a category of presheaves satisfying some adjointness condition which
is just C. Rezk done in [54]. Details of these can be found in [4].
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Proof. The two satements are dual and hence we only prove the first. Consider the adjoint pair colim : CI C : cons
where cons is the constant functor. Then cons sends fibrations to fibrations and trivial fibrations to trivial
fibrations. Therefore they form a Quillen pair and then the Corollary A.3.7 can be applied.

A.4.1 Homotopy Pullbacks and Pushouts

In the following we try to compute homotopy pullbacks and homotopy pushouts which means I := 1 →
0← 2 and I := 1← 0→ 2 respectively. Since they are dual, we give the example of homotopy pushouts.

Proposition A.4.7. The pushout diagram A1 ↢ A0 ↣ A2 consisting of a pair of cofibrations between cofibrant
objects is projectively cofibrant.

Proof. Given any trivial fibration X• → Y• in CI and any lifting problem

∅ X•

A• Y•

we expend this lifting problem first.

X2

A2 X0 Y2

A0 X1 Y0

A1 Y1

At first sinceA0 is cofibrant andX0 → Y0 is a trivial fibration, we can obtain a mapA0 → X0. Then we solve
the lifting problem (A0 → A1, X1 → Y1) where A0 → X1 is the composition of X0 → X1 and A0 → X0. The
map A2 → X2 is obtained similarly.

Remark A.4.8. For any diagram B• in CI which is equipped with the projective model structure, we can
construct its cofibrant replacement as follows.

A1 A0 A2

B1 B0 B2

∼ ∼ ∼

First we replace B0 by its cofibrant replacement A0. Then we factor A0 → B1 as a composition of a cofibra-
tion and a trivial fibration. A0 → B2 is factored similarly. Then by the proposition above A• is projectively
cofibrant.

For some special model categories, the computation of homotopy pullbacks and pushouts can be much
simpler.

Definition A.4.9. A model category is called
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(1). left proper if weak equivalences are preserved by pushouts along cofibrations.

A0 A2

A1 •

∼

∼

⌟

(2). righ proper if weak equivalences are preserved by pullbacks along fibrations

(3). proper if it’s both left proper and right proper.

Theorem A.4.10. (1). In a left proper model category, ordinary pushout along cofibrations are homotopy pushouts.

(2). In a right proper model category, ordinary pullbacks along fibrations are homotopy pullbacks.

Proof. We just prove the first statement since they are dual. Given a pushout diagram A1 ↢ A0 → A2 we
need to show B = A1

∐
A0
A2 is the homotopy pushout.

A′0 A′2

A0 A2

A′1 B′

A1 B

∼
∃!

∼∼

⌟

⌟

At first we replace the diagram A1 ↢ A0 → A2 by its cofibrant replacement A′1 ↢ A′0 ↣ A′2 according to
Remark A.4.8. Let B′ = A′1

∐
A′0
A′2. Then there will exist a unique map B′ → B. We will prove this map is

a weak equivalence hence an isomorphism in Ho(C).

A0 A2

A′0 A′2

A′1 B′

A′1
∐
A′0
A0 = C D = C

∐
A0
A2

A1 B = A1

∐
A0
A2

⌟

∼

∼

⌟

∼

∼

∼

∼

Let C = A′1
∐
A′0
A0. Since C is left proper, A′1 → C is a weak equivalence. Note that A′1 → A1 is a weak

equivalence. Hence the unique map C → A1 is a weak equivalence.
Next we prove D = C

∐
A0
A2
∼= B′

∐
A′2
A2 and then this will imply the map B′ → D is a weak

equivalence by the left properness. Given a pair of maps (B′ → X,A2 → X) which coincide on A′2.
(A′1 → B′ → X,A0 → A2 → X) will induce a unique map C → X . (C → X,A2 → X) gives a unique map
D → X . This proves D is the pushout of B′ ↢ A′2

∼−→ A2.
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Finally to prove B′ → B is a weak equivalence we only need to prove D → B is a weak equivalence.

A0 X A2

C Y D

A1 Z B

∼

∼

∼

⌟ ⌟

∼⌟
⌟

We factor A0 → A2 as a composition of a cofibration A0 → X and a trivial fibration X → A2. Let Y =
C
∐
A0
X . Then D will be the pushout Y

∐
X A2 by pasting theorem for pushouts. Next let Z = A1

∐
C Y .

Then B will be the pushout Z
∐
Y D. Since C is left proper, along X ↣ Y , Y → D is a weak equivalence,

and along C ↣ Y , Y → Z is a weak equivalence. Since A0 → A1 is a cofibration by assumption, X → Z
will also be a cofibration along which Z → B will be a weak equivalence. Then D → B is hence a weak
equivalence.

Example A.4.11. [14, Proposition 2.3.27] implies a model category with all objects cofibrant is left proper.
Therefore sSet is left proper. Actually it’s right proper as well.

A.4.2 Reedy Categories

Until now we have only considered projective and injective model structures on CI . But for some special
small categories I , there will exist another model structure on CI with objectwise weak equivalences.

Definition A.4.12. A Reedy structure on a small category R consists of a degree map deg : Ob(R) → Z≥0
together with a pair of subcategories

→
R and

←
R of degree-increasing and decreasing arrows respectively such

that

(1). for any non-identity morphism in
→
R, the degree of the domain is strictly less than the degree of the

codomain and dually for any non-identity map in
←
R the degree of the domain is strictly greater than

the degree of the codomain

(2). any morphism f inR can be uniquely factored as

• •

•

f

←
f ∈
←
R

→
f ∈
→
R

A categoryRwith Reedy structure is called the Reedy category.

Example A.4.13. ∆ is a Reedy category with
→
∆ and

←
∆ consisting of injective maps and surjective maps

respectively.

Fact A.4.14. (1). If R is a Reedy category, then Rop is also a Reedy category with
−→
Rop =

←
R
op

and
←−
Rop =

→
R
op

.

(2). IfR andR′ are two Reedy categories, thenR×R′ will also be a Reedy category with the degree map
being the plus of the two.

Therefore ∆op is Reedy as well. For a category C, simplicial objects and cosimplicial objects on it are
functors ∆op → C and ∆→ C respectively.
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Theorem A.4.15. 26 For any Reedy categoryR and model category C.

(1). the category C
→
R admits a projective model structure

(2). the category C
←
R admits an injective model structure

(3). the category CR admits a model structure called the Reedy model structure such taht a map in it is a (Reedy)

weak equivalence, a (Reedy) cofibration or a (Reedy) fibration iff its restriction to both
→
R and

←
R is so in the

sense above.

We can also describe the Reedy model structure more explicitly.

Definition A.4.16. LetR be a Reedy category and α be an object of it.

(1). The latching category ∂(
→
R ↓ α) ofR at α is the full subcategory of

→
R ↓ α27 containing all objects except

the identity map idα.

(2). The matching category ∂(α ↓
←
R) ofR at α is the latching category ∂(

−→
Rop ↓ α) ofRop at α.

Definition A.4.17. Let C be a model category and X : R → C be a functor from a Reedy category R to C.

Here we also use X to denote the induced functor on ∂(
→
R ↓ α) sending β → α to X(β). Then

(1). the latching object of X at α is Lα := colim
∂(
→
R↓α)

X and the latching map of X at α is the natural map

LαX → X(α)

(2). the matching object of X at α is Mα := lim
∂(α↓

←
R)
X and the matching map of X at α is the natural map

X(α)→MαX .

If f : X → Y is a morphism in CR, then

(1). the relative latching map of f at α is the natural map X(α)
∐
LαX

LαY → Y (α)

(2). the relative matching map of f at α is the natural map X(α)→ Y (α)×MαY MαX

Theorem A.4.18. 28 LetR be a Reedy category and C be a model category. For a map f : X → Y in CR

(1). it’s a Reedy weak equivalence if it’s an objectwise weak equivalence

(2). it’s a Reedy (trivial) cofibration if for every α in R, the relative latching map X(α)
∐
LαX

LαY → Y (α) is a
(trivial) cofibration in C

(3). it’s a Reedy (trivial) fibration if for every α in R, the relative matching map X(α) → Y (α) ×MαY MαX is a
(trivial) fibration in C.

Moreover if C is a simplicial model category29, then with the Reedy model structure CR will also be a simplicial model
category.

Definition A.4.19. Let C be a model category and X be an object in C. Viewing X as the constant functor in
C∆ and C∆op

, then

(1). the cosimplicial resolution X̃ is a cofibrant replacement of X in the Reedy model category C∆

26 [17, Proposition 22.3]
27Objects in this category are morphisms from an object in

→
R to α

28 [17, 22.6] or [28, Theorem 15.3.4]
29For the theory of simplicial model categories, see the next section.
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(2). the simplicial resolution X̂ is a fibrant replacement of X in the Reedy model category C∆op

.

Remark A.4.20. The Reedy model structure and the projective model structure on CR are not equal gener-
ally but they are always Quillen equivalent [28, section 15.6].

Lemma A.4.21. 30 Let R be a Reedy category and C be a model category. Suppose f : X → Y is a map between
R-indexed diagrams, α is an object ofR and S is a class of maps in C.

(1). If for every object β ofRwhose degree is less than that of α the relative latching mapX(β)
∐
LβX

LβY → Y (β)

has the LLP wrt all maps in S, then the induced map LαX → LαY of latching objects will also have the LLP
wrt all maps in S.

(2). Dually If for every object β of R whose degree is less than that of α the relative matching map X(α) →
Y (β)×MβY MβX has the RLP wrt all maps in S, then the induced map LαX → LαY of latching objects will
also have the RLP wrt all maps in S.

Proof. We only prove the first statement. At first we decompose ∂(
→
R ↓ α) as follows

F 0∂(
→
R ↓ α) ⊆ F 1∂(

→
R ↓ α) ⊆ · · · ⊆ F deg(α)−1∂(

→
R ↓ α) = ∂(

→
R ↓ α)

where F k∂(
→
R ↓ α) is the full subcategory of ∂(

→
R ↓ α) consisting of objects β → α in∂(

→
R ↓ α) such that

deg(β) ≤ k. Then in F 0∂(
→
R ↓ α) only identity morphisms idβ with deg(β) = 0 are allowed and for such β,

Lβ = colim
∂(
→
R↓β)

X is the empty limit hence being the initial object in C. The map X(β) → Y (β) is just the

relative latching map X(β)
∐
LβX

LβY → Y (β) having the LLP wrt to every map in S.
Now we give a lifting problem

LαX E

LαY B

where E → B is a map in S. For β with deg(β) = 0 appearing in ∂(
→
R ↓ α), we have a lifting Y (β) → E

due to the analysis above. Since colim
F 0∂(

→
R↓α)

X is just the coproduct of X(β) with deg(β) = 0, the lifting

colim
F 0∂(

→
R↓α)

Y → E exists.

Now we prove this lemma by induction. Suppose 0 < k < deg(α) and there has existed a lifting

colim
Fk−1∂(

→
R↓α)

Y → E. Let β → α be on object of ∂(
→
R ↓ α) with deg(β) = k and then it induces a functor

→
R ↓ β → F k−1∂(

→
R ↓ α) sending γ → β to γ → β → α. This defines a map Lβ → E which factors through

colim
Fk−1∂(

→
R↓α)

Y . Then we have the following lifting problem

X(β)
∐
LβX

LβY E

Y (β) B

which solves by assumption. This induces a map Y (β)→ E with deg(β) = k. Together with Y (β)→ E for
deg(β) < k, we obtain colim

Fk∂(
→
R↓α)

Y → E. Finally we will have LαY → E.

Corollary A.4.22. Let R be a Reedy category and C be a model category. Then a Reedy cofibration (resp. fibration)
f : X → Y betweenR-indexed diagrams, is an objectwise cofibration (resp. fibration).

30 [28, Lemma 15.3.9]
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Proof. The map f is a Reedy cofibration if and only if the relative latching map X(α)
∐
LαX

LαY → Y (α) is
a cofibration i.e. having the LLP wrt all trivial fibrations. Then if f is a Reedy cofibration, from the lemma
above LαX → LαY will be a cofibration. X(α) → Y (α) is just the map X(α) → X(α)

∐
LαX

LαY → Y (α)
where the first mapX(α)→ X(α)

∐
LαX

LαY is the pushout of Lα → LαY along LαX → X(α) hence being
a cofibration. Then X(α) → Y (α) will be the composition of two cofibrations hence being a cofibration as
well.

For Reedy categories R, even though CR does not admit injective and projective model structures, de-
rived functors of limits and colimits may exist.

Proposition A.4.23. 31 LetR be a Reedy category and C be a model category.

(1). If any constant R-indexed diagram at a fibrant object of C is Reedy fibrant, then the colimit functor colim :
CR → C is left Quillen.

(2). If any constant R-indexed diagram at a cofibrant object of C is Reedy cofibrant, then the limit functor lim :
CR → C is right Quillen.

There is a criterion to check whether a Reedy categoryR has the properties stated above.

Proposition A.4.24. 32 LetR be a Reedy category.

(1). It has fibrant constants if and only if the subcategory
←
R is a disjoint union of categories with a terminal object.

(2). It has cofibrant constants if and only if the subcategory
→
R is a disjoint union of categories with an initial object.

A.5 Enriched Model Categories

Definition A.5.1. A simplicially enriched category C consists of the following data

(1). A set of objects Ob(C)

(2). Any pair of objects (X,Y ) in Ob(C) is associated with a simplicial set Map(X,Y ). A 0-simplex in
Map(X,Y )0 will be simply called a morphism from X to Y . The 1-simplex in Map(X,Y )1 will be
called homotopies.

(3). For any triple of objects (X,Y, Z), there is a composition map of simplicial sets

◦ : Map(X,Y )×Map(Y,Z)→ Map(X,Z), (f, g) 7→ g ◦ f

(4) For any object X , there is an identity 0-simplex idX ∈ Map(X,X)0.

These data are required to satisfy usual associativity and unit axioms.

Remark A.5.2. We can associate every simplicially enriched category C two ordinary categories C0 and π0C,
where

HomC0(X,Y ) = Map(X,Y )0, and Homπ0C(X,Y ) = π0Map(X, .Y )

For any morphism f ∈ Map(A,B)0 we can define a map of simplicial sets f∗ : Map(B,X) → Map(A,X)
for any objectX . Since in ∆ [0] is the terminal object, for every simplicial set S there will exist a unique map
S0 → Sn for any n. For x ∈ S0, we also denote its image in Sn by x. Then f∗ sends g ∈ Map(B,X)n to g ◦ f
where f ∈ Map(A,B)n.

Therefore the composition in C0 is clear. And since the composition preserves homotopies, π0C0 is clear
as well.

31 [56, Proposition 5.4.8]
32 [17, Proposition 22.8]
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Next we want to define the concept of simplicial model categories which is much more complicated than
the simplicially enriched categories since we need to consider the compatibility of simplicial structure and
model structure.

Definition A.5.3. Let K, L, M be categories. A triple of bifunctors

⊗ : K × L →M, Map : Lop ×M→ K, {, } : Kop ×M→ L

equipped with natural isomorphisms

HomM(K ⊗ L,M) ∼= HomK(K,Map(L,M)) ∼= HomL(L, {K,M})

defines a two-variable adjunction. Note that we also write MK for {K,M}.

Example A.5.4. A categoryM enriched over a monoidal category V is tensored and cotensored if the internal
hom functor Map :Mop ×M→ V is one of the adjoints of a two-variable adjunction in which K = V, L =
M. Then ⊗ is the tensor functor and {, } is the cotensor functor.

Definition A.5.5 (The Leibniz Construction). Given a bifunctor ⊗ : K × L →M valued in a category with
pushouts, the Leibniz tensor of a map k : I → J in K and a map l : A → B in L is the map k⊗̂l induced by
the pushout diagram.

I ⊗A I ⊗B

J ⊗A •

J ⊗B

k⊗idA

idI⊗l

⌟

idJ⊗l

k⊗idB

k⊗̂l

Map(B,X)

• Map(A,X)

Map(B, Y ) Map(A, Y )
Map(l,idY )

Map(idA,m)Map(idB ,m)

Map(l,idX)

M̂ap(l,m)

⌟

Given l : A→ B in L and m : X → Y inM, M̂ap(l,m) is defined dually.

Proposition A.5.6. Given classes A, B, C of maps in K, L, M respectively, then

A⊗̂B � C ⇔ B � {̂A, C} ⇔ A� M̂ap(B, C)

Proof. We only proveA⊗̂B�C ⇔ A�M̂ap(B, C). Given maps k : I → I inA, l : A→ B in B andm : X → Y
in C, we want to solve the lifting problem

• X

J ⊗B Y

k⊗̂l m

Looking at the following diagram

I ⊗A I ⊗B

J ⊗A • X

J ⊗B Y

⌟

k⊗̂l
m

87



The map • → X actually consists of a pair of maps (J ⊗ A → X, I ⊗ B → X) which coincide on I ⊗ A.
Using the adjointness, it’s equivalent to the commutative diagram

I Map(B,X)

J Map(A,X)

Again by the adjointness, the following two diagrams are equivalent

X

J ⊗B Y

m

Map(B,X)

J Map(B, Y )

Maps J → Map(A,X) and J → Map(B, Y ) define a map J → Map(B, Y )
∐

Map(A,Y ) Map(A,X). Hence the
original lifting problem is equivalent to the following one

I Map(B,X)

J • Map(A,X)

Map(B, Y ) Map(A.Y )

⌟

M̂ap(l,m)

Definition A.5.7. A two-variable adjunction

⊗ : K × L →M, Map : Lop ×M→ K, {, } : Kop ×M→ L

between model categories K, L, M defines a Quillen two-variable adjunction if any, and hence all by propo-
sition above, of the following statements is satisfied

(1). ⊗̂ defines a map CofK × CofL → CofM. Moreover if any one of the domain map is a weak equiva-
lence, then the image will also be a weak equivalence.

(2). M̂ap defines a map CofL × FibM → FibK. The image is a weak equivalence if either of the domain
map is.

(3). {̂, } defines a map CofK × FibM → FibL. The image is a weak equivalence if either of the domain
map is.

Definition A.5.8. A (closed symmetric) monoidal model category is a (closed symmetric) monoidal category
(V,⊗, I) with a model structure so that the monoidal product ⊗ and the internal hom functor Map define a
Quillen two-variable adjunction and furthermore maps QI ⊗ V → I ⊗ V ∼= V and V ⊗ QI → V ⊗ I ∼= V
are weak equivalences if V is cofibrant, where QI is the cofibrant replacement of the identity object I with
a weak equivalence QI → I .

Remark A.5.9. If I is cofibrant, then the final requirement in the definition above is automatically satisfied
and this comes from the following lemma.

Lemma A.5.10. Given a Quillen two-variable adjunction as in the Definition A.5.7. Fix a cofibrant object A in L,
then the functor −⊗A : K →M is a left Quillen functor.
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Proof. At first we see − ⊗ A is left adjoint to Map(A,−). Since ιA : ∅ → A is a cofibration, for any map
k : I → J

I ⊗ ∅ = ∅ I ⊗A

J ⊗ ∅ = ∅ •

⌟

then the pushout will just be I ⊗ A itself. Note that I ⊗ ∅ = ∅ since the left adjoint functor I ⊗− preserves
colimits especially the empty colimit. Hence the map k⊗̂ιA is just k⊗idA. Then−⊗A preserves cofibrations
and trivial fibrations by proposition above.

Proof of Remark A.5.9. Since V is cofibrant, − ⊗ V is left Quillen. If I is cofibrant, QI → I will be a weak
equivalence between cofibrant objects, via −⊗ V it will be a weak equivalence by Lemma A.3.2.

Definition A.5.11. If V is a monoidal model category, a V-model categoryM is a V-enriched model category
which is tensored and cotensored in such a way that (⊗, {, },Map) forms a Quillen two-variable adjunction
and the map QI ⊗M → I ⊗M is a weak equivalence for every cofibrant object M inM.

Example A.5.12. sSet is a closed symmetric monoidal model category. Its internal hom functor can be
given in any category of presheaves and the tensor product is just the ordinary product. Then to have the
adjointness it’s necessary to have

HomsSet(∆
n ×X,Y ) ∼= HomsSet(∆

n,Map(X,Y )) ∼= Mapn(X,Y )

Such internal hom functor is well defined and you can find details in [41, chapter I section 6]. It’s a theorem
in the theory of simplicial sets that they satisfy the condition of Quillen two-variable adjunction. See for
example [14, Corollary 3.1.6 and Corollary 3.1.7].

Then a simplicial model category is just a sSet-model category.
For a simplicial model category C we can define the cosimplicial resolution and simplicial resolution of

an object X in C as follows. Let QX and PX be a cofibrant replacement and fibrant replacement of X
respectively, then we define X̃n = ∆n⊗QX and X̂n = PX∆n

. [28, Proposition 16.1.3] shows this definition
is equivalent to that in Definition A.4.19 using Reedy model categories.

For a V-model category M, passing to the level of homotopies, its homotopy theory Ho(M) has an
enriched structure as well.

Theorem A.5.13. 33 IfM is a V-model category, then Ho(M) is Ho(V)-enriched with the total derived two-variable
adjunction (⊗L,R{, },RMap).

Note that V ⊗L M = QV ⊗ QM where QV and QM are cofibrant replacements, and RMap(X,Y ) =
Map(QX,PY ) where QX is a cofibrant replacement and PY is a fibrant replacement.

A.5.1 Weak Equivalences in a Simplicial Model Category

For a simplicial model category C, we talk about some relationships between weak equivalences in C and
weak equivalences in sSet, which are useful for the next section about left Bousfield localization.

Proposition A.5.14. Let C be a simplicial model category. If g : X → Y is a morphism in C, then g is a weak
equivalence if either of the following two conditions is satisfied.

(1). For every fibrant object Z in C, the map

g∗ = Map(g, idZ) : Map(Y, Z)→ Map(X,Z)

is a weak equivalence in sSet.
33 [31, Theorem 4.3.2].
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(2). For every cofibrant object W , the map

g∗ = Map(idW , g) : Map(W,X)→ Map(W,Y )

is a weak equivalence in sSet.

Proof. The two statements are dual and hence we only need to prove the first. First we replace X and Y by
their fibrant replacements PX and PY with trivial cofibration jX : X → PX and jY : Y → PY . This will
induce a map Pg : PX → PY .

Map(PY,Z) Map(PX,Z)

Map(Y,Z) Map(X,Z)

Pg∗

j∗Y

g∗

j∗X

jY ∗ and j∗X will then be trivial fibrations in sSet by the definition of simplicial model categories. g∗ is
a weak equivalence by assumption and then Pg∗ is a weak equivalence as well. Especially there is an
isomorphism

Pg∗0 : π0Map(PY,Z)
∼−→ π0Map(PX,Z)

Then there will exist a map f : PY → PX such that f ◦ Pg = idPX in π0Map(PX,PX). f∗0 = (Pg∗0)
−1

is an isomorphism for every fibrant object Z. Hence then there will exist some h : PX → PY such that
h ◦ f = idPY in π0Map(PY, PY ). f is therefore an isomorphism in π0C and so is Pg. According to the
following lemma, Pg will be an isomorphism in Ho(C). Next by Corollary A.2.23, Pg is weak equivalence.
Finally g is hence a weak equivalence.

Lemma A.5.15. For a simplicial model category C, the localization map γ : C → Ho(C) factors through π0C.

Proof. We only need to prove any two maps f, g ∈ Map(X,Y )0 with a homotopy h from f to g define the
same map in Ho(C). h ∈ Map(X,Y )1 is equivalent to a map h : ∆1 → Map(X,Y ) such that hi0 = f, hi1 = g
by Yoneda’s lemma. By adjointness it’s also equivalent to a map ∆1 ⊗ X → Y which is denoted by h as
well.

Next we replace X and Y by their fibrant replacements PX and PY with trivial cofibrations jX : X →
PX and jY : Y → PY . Since every object in sSet is cofibrant, ∆1 ⊗ X → ∆1 ⊗ PX will then be a trivial
cofibration.

X ∆1 ⊗X Y

PX ∆1 ⊗ PX PY

i0

i1
jX ∼

i0

i1

∼

h

Ph

jY∼

Since PY is fibrant, the arrow Ph : ∆1 ⊗ PX → PY exists whose adjoint is P̃ h : PX → PY ∆1

. Let
f ′ = Ph ◦ i0 and g′ = Ph ◦ i1. Then Ph · i0 · jX = jY · h · i0 which means f ′ · jX = jY · f . Similarly
g′ · jX = jY · g.

Since (∂10 , ∂
1
1) : ∆

0
∐

∆0 → ∆1 is a cofibration and PY is fibrant,

ev = (ev0, ev1) : PY
∆1

→ PY ∆0 ∐
∆0

= PY × PY

is a fibration
PY ∆1

PX PY × PY PY

PY

(f ′,g′)

P̃h ev s
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In the diagram above s is induce by the map ∆1 → ∆0. Since ∂1i : ∆0 → ∆1 is a trivial cofibration, evi will
then be a trivial fibration. evi ◦ s = idPY . Hence s is a weak equivalence. All of these prove PY ∆1

is a path
object and P̃ h is a right homotopy from f ′ to g′. Then in Ho(C), [f ′] = [g′]. But then

[f ] = [jY ]
−1[f ′][jX ] = [jY ]

−1[g′][jX ] = [g]

Proposition A.5.16. If moreover we suppose g : X → Y is a morphism between cofibrant objects in a simplicial
model category C, then g is a weak equivalence if and obly if for all fibrant obejct Z, the map g∗ : Map(Y, Z) →
Map(X,Z) is a weak equivalence in sSet. The dual statement is true as well.

Proof. The part ”⇐” has been proved above.
”⇒”: Since g is a weak equivalence, g will be an isomorphism in Ho(C). According to Theorem A.5.13,

g∗ : RMap(Y, Z) → RMap(X,Z) is an isomorphism in Ho(sSet). But for any cofibrant object X and fibra-
tion object Z, RMap(X,Z) = Map(X,Z). Then g∗ is an isomorphism between Map(Y,Z) and Map(X,Z) in
Ho(sSet). Therefore g∗ is a weak euivalence in sSet by Corollary A.2.23.

A.5.2 Local Homotopy Limits and Colimits

Finally we talk about the local version of homotopy limits and colimits in a simplicial model category C,
which is due to Bousfield and Kan.

Definition A.5.17. Let I be a small category and C be a simplicial model category.

(1). If X is an I-indexed diagram i.e. X : I → C and K : Iop → sSet, then the coequalizer of the following
diagram ∐

σ:α→β∈I
K(β)⊗X(α)

∐
α∈I

K(α)⊗X(α)
ϕ

ψ

is denoted by K ⊗I X and called the functor tensor product where the component of ϕ on σ : α → β is
idK(β)⊗σ∗ : K(β)⊗X(α)→ K(β)⊗X(β) and the component of ψ on σ is σ∗⊗idX(α) : K(β)⊗X(α)→
K(α)⊗X(β).

(2). If I = ∆op and K = △ : ∆→ sSet is the Yoneda embedding, then the geometric realization |X| of X is
defined to be△⊗∆op X , i.e. the coequalizer of the following diagram

∐
σ:[k]→[n]∈∆

∆k ⊗Xn

∐
[n]∈∆

∆n ⊗Xn

ϕ

ψ

where the component of ϕ on σ : [k] → [n] is id∆k ⊗ σ∗ : ∆k ⊗Xn → ∆k ⊗Xk and the component of
ψ on σ is σ∗ ⊗ idXn : ∆k ⊗Xn → ∆n ⊗Xn.

(3). If X is a I-indexed diagram and K : I → sSet, then the equalizer of the following diagram

∏
α∈I

X(α)K(α)
∏

σ:α→β
X(β)K(α)

ϕ

ψ

is denoted by {K,X}I and called the functor cotensor product where the projection of ϕ on the com-
ponent σ : α → β is σidK(α)

∗ : X(α)K(α) → X(β)K(α) and the projection of ψ on σ is (idX(β))
σ∗ :

X(β)K(β) → X(β)K(α).
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(4). If I = ∆ and K = △ is the Yoneda embedding , then the total object TotX of X : ∆ → C is difined to
be {△, X}∆ i.e. the equalizer of the following diagram

∏
[n]∈∆

(Xn)∆
n ∏

σ:[n]→[k]

(Xk)∆
n

ϕ

ψ

where the projection of ϕ on the component σ : [n] → [k] is σid∆n

∗ : (Xn)∆
n → (Xk)∆

n

and the
projection of ψ on σ is (idXk)σ∗ : (Xk)∆

k → (Xk)∆
n

.

Remark A.5.18. K⊗IX is actually the coend34
∫ α∈I

K(α)⊗X(α) and dually {K,X}I is the end
∫
α∈I{K(α), X(α)} =∫

α∈I X(α)K(α).

Example A.5.19. A classical result says if K = ∗ : Iop → sSet sends every object of I to the terminal
object in sSet, then ∗ ⊗I X ∼= colimIX . It’s just the proof that a category with coproducts and coeuqlizers
is cocomplete. Therefore we can view K ⊗I X as the weighted colimit where the weight is the functor K :
Iop → sSet. Dually {K,X}I will be the weighted limit. In the following we will show homotopy limits and
colimits are special cases of this type.

If we replace I by any Reedy categoryR, we will obtain the following theorem.

Theorem A.5.20. 35 LetR be a Reedy category and C be a simplicial model category. Then the functor tensor product

⊗R : sSetR
op

× CR → C, (K,X) 7→ K ⊗R X :=

∫ α∈R
K(α)⊗X(α)

is a left Quillen bifunctor with respect to the Reedy model structures, and dually the functor cotensor product

{, }R : (sSetR)op × CR → C, (K,X) 7→ {K,X}R :=

∫
α∈R

X(α)K(α)

is a right Quillen bifunctor with respect to the Reedy model structures.

Remark A.5.21. If I is a small category and CI can be equipped with injective or projective model structure,
then the theorem above is true as well, which means it only depends on objectwise cofirations or objectwise
fibrations. See Theorem 18.4.1 in [28].

For any small category I , we can define a functor Iop → sSet such that it sends an object α of Iop to the
simplicial set N(α ↓ I) where N : Cat→ sSet is the nerve functor.

Definition A.5.22. 36 Let I be a small category and C be a simplicial model category. Suppose X : I → C is
an I-indexed diagram on C. Then

(1). the homotopy colimit of X is defined to be

hocolimX := N(− ↓ I)⊗I QX

(2). the homotopy limit of X is defined to be

holimX := {N(I ↓ −), PX}I

where QX and PX are weakly equivalent replacements of X such that their values are in cofibrant objects
and fibrant objects respectively. If C is functorial, then Q and P exist in an obvious way.

34See [40, Section IX.6]
35 [55, Theorem 14.3.1] or [28, Theorem 18.4.11]
36 [59, Definition 8.2]
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Remark A.5.23. In [28], N(− ↓ I)op is chosen to define the homotopy colimit. Up to homotopy, two choices
will derive the same result, since the nerve of a category is weakly equivalent to that of its opposite. More
discussions can be found in [28, Remark 18.1.11]. Actually N(− ↓ I)op and N(− ↓ I) are all cofibrant
replacements of the terminal object in sSetI

op

proj [28, Proposition 14.8.9] and choosing any other cofibrant
replacement as the weight functor will obtain weakly equivalent result [28, Theorem 19.4.6].

Remark A.5.24. This definition for homotopy colimits and limits are equivalent to previous global one
using derived functors. In [55], Emily Riehl introduces the concept of two-sided simplicial bar resolution as
follows. For X : I → C and K : Iop → sSet we can define a simplicial object B•(K, I,X) in C such that

Bn(K, I,X) =
∐

d:[n]→I

K(dn)⊗X(d0)

and the bar construction is defined to be the geometric realization of this simplicial bar resolution i.e.

B(K, I,X) := |B•(K, I,X)| = △⊗∆op B•(K, I,X)

For any object α of I , there is a functor Iop → sSet such that it sends any object β of I to the constant
simplicial set HomI(β, α). We denote this functor just by α. Then this defines a functor

B(I, I,X) : I → C, α 7→ B(α, I,X)

If C has a functorial cofibrant replacement functor Q, then B(I, I,Q−) : CI → CI will be the left defor-
mation (see Remark A.3.4) for colim : CI → C. Then the left derived functor of colim exists which is just
B(∗, I, Q−) [55, Corollary 5.1.3]. In [55, Theorem 6.6.1] the author proves B(∗, I,X) ∼= N(− ↓ I) ⊗I X .
Therefore the definition of homotopy colimits above is equivalent to that using the left derived functor.

A dual discussion for homotopy limits is valid as well. The reader can also find the same discussion
in [59, Section 8].

There are some beautiful corollaries for constructions we discussed above one of which is that ho-
motopy limits and colimits preserve weak equivalences in a certain class of objects, which are similar to
ordinary limits and colimits preserving isomorphisms.

Corollary A.5.25. 37 Let I be a small category and C be a simplicial model category.

(1). If f : X → Y is a map of I-indexed diagrams in C such that for any object α of I , fα is a weak equivalence
between cofibrant objects, then the induced map f∗ : hocolimX → hocolimY is a weak equivalence of cofibrant
objects.

(2). If f : X → Y is a map of I-indexed diagrams in C such that for any object α of I , fα is a weak equivalence
between fibrant objects, then the induced map f∗ : holimX → holimY is a weak equivalence of fibrant objects.

Proof. It just follows from the definition of Quillen bifunctors and Ken Brown’s lemma.

Definition A.5.26. The Bousfield-Kan map of cosimplicial simplicial sets is the map ϕ : N(∆ ↓ −) → △ such
that ϕk sends the following n-simplex

[i0] [i1] · · · [in]

[k]

σ0 σ1 σn−1

τ

to the n-simplex
[τσn−1 · · ·σ0(i0), τσn−1 · · ·σ1(i1), · · · , τσn−1(in−1), τ(in)]

of ∆k which is just a map [n]→ [k].
37 [28, Theorem 18.5.3]
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Proposition A.5.27. The Bousfield-Kan map of cosimplicial simplicial set is a weak equivalence of Reedy cofibrant
cosimplicial simplicial sets.

Proof. It’s [28, Proposition 18.7.2].

Definition A.5.28. Let C be a simplicial model category.

(1). If X is a simplicial object in C, then the Bousfield-Kan map is the map

N(− ↓ ∆op)op ⊗∆op X
ϕ⊗∆op idX−−−−−−−→ △⊗∆op X = |X|

(2). If X is a cosimplicial object in C, then Bousfield-Kan map is the map

TotX = {△, X}∆ (idX)ϕ−−−−→ {N(∆ ↓ −), X}∆

Theorem A.5.29. Let C be a simplicial model category.

(1). If X is a Reedy cofibrant simplicial object in C, then the Bousfield-Kan map hocolimX → |X| is a natural weak
equivalence.

(2). If X is a Reedy fibrant cosimplicial object in C, then the Bousfield-Kan map TotX → holimX is a natural weak
equivalence.

Proof. Since Reedy cofibrations (resp. fibrations) are objectwise cofibrations (resp. fibrations), the left side
of morphisms in the definition above are homotopy colimits (resp. limits). Then this theorem follows from
the proposition above and Quillen bifunctors for Reedy model categories i.e. Theorem A.5.20.

Corollary A.5.30. IfX is a simplicial simplicial set i.e. ∆op → sSet, then the Bousfield-Kan map hocolimX → |X|
is a weak equivalence.

Proof. [28, Corollary 15.8.8] says any simplicial object in sSet is Reedy cofibrant.

A.6 Bousfield Localization

We first deal with the case when C is an ordinary category and then pass to simplicial model categories.

A.6.1 Localization for Ordinary Categories

Suppose C is an ordinary category and S ⊆ C is a subcategory of C containing all isomorphisms. Morphisms
in S are called equivalences.

Definition A.6.1. An object X of C is said to be S-local if for any equivalence f : A → B in S, the induce
map

f∗ : HomC(B,X)
∼−→ HomC(A,X)

is a bijection.

Roughly speaking X is S-local if objects in S can not be distinguished by mapping them into X .

Definition A.6.2. A map µY : Y → X in C is called an S-localization of Y if X is local and µY is an
equivalence i.e. µY belongs to S. The pair (C, S) is said to have good localizations if every object in C has a
localization.
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Remark A.6.3. Supose µY : Y → X and µY ′ : Y
′ → X ′ are localizations of Y and Y ′. Then for any map

f : Y → Y ′, there will exist a unique map g : X → X ′ such that g · µY = µY ′ · f .

Y X

Y ′ X ′

f

µY

µY ′

∃! g

Proof. Since µY ∈ S and X ′ is local,

µ∗Y : HomC(X,X
′)
∼−→ HomC(Y,X

′)

Then there will exist a unique g ∈ HomC(X,X
′) satisfying µ∗Y (g) = g · µY = µY ′ · f .

Corollary A.6.4. Any two localizations of an object Y in C are canonically isomorphic.

Remark A.6.5. If (C, S) has good localizations, then there will exist a lozalization functor LS sending an
object Y in S to a localization µY : Y → X and any morphism f : Y → Y ′ to the commutative diagram

Y X

Y ′ X ′

f

µY

µY ′

g

Any different choices of localizations will obtain isomorphic localization functors. For simplicity we just
write LS(Y ) = X and LS(f) = g. In this way we define a functor LS : C → LocS(C) where the latter is the
full category of C consisting of local objects.

Proposition A.6.6. If f : Y → Y ′ is an equivalence i.e. in S, then LS(f) is an isomorphism. Moreover if S satisfies
the two-of-three property, then the converse is true as well.

Proof. If S satisfies the two-of-three property, the converse will be clear since the isomorphism LS(f) ∈ S
and then µY ′ · f = LS(f) · µY ∈ S implies f ∈ S.

Now suppose f ∈ S. Then µY ′ · f ∈ S. Since X is local, we have a bijection

(µY ′ · f)∗ : HomC(X
′, X)

∼−→ HomC(Y,X)

and then there will exist a unique map g′ : X ′ → X satisfying g′ ·µY ′ ·f = µY . Hence gg′µY ′f = gµY = µY ′f

Y X ′

X X

X ′ X ′

µY

µY ′ ·f

∃! g′

g g

idX′

Then LS(g · µY ) = g · g′ = idX′ when choosing µY · f as the localization of Y . On the other hand

Y X

X ′ X ′

X X

µY

µY ′ ·f

g′

g

g′

idXµY

when choosing µY as the localization of Y , we have LS(µY ) = g′ ·g = idX . This means g is an isomorphism.
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Theorem A.6.7. Suppose (C, S) has good localizations. Then

LocS(C)
i−→ C γ−→ C[S−1]

is an equivalence between LocS(C) and C[S−1], where i is the embedding functor and γ is the localization functor.

Proof. Since LS : C → LocS(C) sned all morphisms in S to isomorphisms, there exists a functor RS :
C[S−1]→ LocS(C) such that RS ◦ γ = LS .

C LocS(C) C C[S−1]

C[S−1]

γ

LS

RS

i γ

idC[S−1]

µ

γ ·i·LS sends any object Y in C to its localizationX . Then (µY )Y ∈Ob(C) gives a natural isomorphism between
idC [S

−1] and γ · i ·RS . On the other hand, for simplicity we may choose the localization of a local object X
to be itself and then RS · γ · i = LS · i = idLocS(C).

A.6.2 Localization for Simplicial Model Categories

Now we deal with the localization for model categories.

Definition A.6.8. Suppose C is a model category. Then a left Bousfield localization Cloc of C is another model
category with the same underlying categorical structure such that CofCloc = CofC but WC ⊆WCloc .

Remark A.6.9. By definition in Cloc there are less fibrations FibCloc ⊆ FibC . And we obtain a Quillen pair
id : C Cloc : id , where the left identity functor preserves cofibrations and weak equivalences.

In the following we assume C is a simplicial model category and S is a class of morphisms in it. Then
there is a right derived internal hom functor

RMap : Ho(C)op ×Ho(C)→ Ho(sSet), (X,Y ) 7→ Map(QX,PY )

where QX is a cofibratn replacement and PY is a fibrant replacement.

Definition A.6.10. (1). An object X of C is S-locl is for all f : A → B in S, the induced map f∗ :
RMap(B,X) → RMap(A,X) is an isomorphism in Ho(sSet), which is equivalent to saying Qf∗ :
Map(QB,PX)→ Map(QA,PX) is a weak equivalence in sSet.38

(2). A map g : X → Y in C is an S-equivalence if for every S-local object Z, the induced morphism
Qg∗ : Map(QY,PZ) → Map(QX,PZ) is a weak equivalence in sSet. The class of S-equivalences is
denoted by WS .

(3). An S-localization of an object X in C is an S-equivalence X → X̂ where X̂ is S-local.

Lemma A.6.11. Every weak equivalence in C is an S-equivalence which means W ⊆WS .

Proof. A map g : X → Y in C is a weak equivalence if and only if Qg : QX → QY is a weak equiv-
alence. By Proposition A.5.16, for a weak equivalence Qg and a fibrant object Z, the induce morphism
Qg∗ : Map(QY,Z)→ Map(QX,Z) is a weak equivalence in sSet. This proves g is an S-equivalence.

Lemma A.6.12. If g : X → X ′ is a weak equivalence, then X is S-local if and only if X ′ is S-local.
38From Proposition A.5.16, this definition is independent from the choice of cofibrant replacements and fibrant replacements.
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Proof. For a map f : A→ B in S, we have

Map(QB,PX) Map(QB,PX ′)

Map(QA,PX) Map(QA,PX ′)
∼

∼

Lemma A.6.13. An S-equivalence f : X → Y between S-local objects is a weak equivalence in C.

Proof. Since X is S-local, the map Qf∗ : Map(QY,PX) → Map(QX,PX) is a weak equivalence between
simplicial sets. Then especially

π0Qf
∗ : π0Map(QY,PX)

∼−→ π0Map(QX,PX)

is an isomorphism at the level of path components. Here we have a sequence

∅ QX X PX ∗pX
∼

jX
∼

There exists a map g : QY → PX such that g · Qf = jX · pX in π0Map(QX,PX). By Lemma A.5.15,
[g ·Qf ] = [jX · pX ] in Ho(C).

Next since Y is S-local,
Qf∗ : Map(QY,PY )→ Map(QX,PY )

is a weak equivalence. And then we have Qf∗(jY · pY ) = jY · pY · Qf = Pf · jX · pX = Pf · g · Qf in
π0Map(QX,PY ). But since π0Qf∗ is an isomorphism, jY · pY = Pf · g in π0Map(QY,PY ). Then [jY · pY ] =
[Pf · g] in Ho(C). This means [g] has a left inverse and a right inverse, hence an isomorphism, in Ho(C) and
therefore [Qf ] is an isomorphism in Ho(C). Qf is then a weak equivalence and so is f .

Theorem A.6.14. If C is left proper combinatorial simplicial model category and S is a small set of morphisms in
C, then the left Bousfield localization LSC with respect to WS of S-equivalences exists and is itself a left proper
combinatorial simplicial model category. Moreover fibrant objects in LSC are precisely the S-local objects of C that are
fibrant in C.

Proof. See [6, Theorem 4.7] or [1, Theorem 4.1].

Remark A.6.15. Conversely every left Bousfield localization can be obtained in this way. Details can be
found in [1, Proposition 3.10].

Remark A.6.16. There is a Quillen adjunction id : C LSC : id and passing to homotopy theories

they form an adjoint pair Lid : Ho(C) Ho(LSC) : Rid . Rid = id ◦ P where P is the fibrant replace-
ment functor of LSC. Since fibrant (resp. cofibrant) objects in LSC are fibrant (resp. cofibrant) in C, Rid is
then fully faithful. At first we see its image in C consists of fibrant objects which are S-local as well. For
any S-local object in C, it’s weakly equivalent to its fibrant replacement. From Lemma A.6.12, its fibrant
replacement is S-local as well. Therefore S-local objects are in the essential image of Rid. If X is isomorphic
to an S-local object in Ho(C) whose internal hom functor is RMap, by the definition of S-local objects, it’s
then clear to see X will be S-local. Therefore the essential image of the fully faithful functor Rid consists of
S-local objects.

We know in the Bousfield localization LSC, trivial firbations are just those trivial fibrations in the orig-
inal category C but fibrations are different. However, the following theorem will tell us fibrations will also
not be changed in the local world.
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Theorem A.6.17. Suppose X and Y are fibrant objects in LSC. Then a map p : X → Y in LSC is a fibration if and
only if it’s a fibration in C.

Proof. We only need to prove a fibration p : X → Y in C is a fibration in LSC when X and Y are fibrant in
LSC. Now given an arbitrary lifting problem

A X

B Y

p∼

where A → B is a trivial cofibration i.e. a cofibration which is also an S-equivalence. Next we decompose
this lifting problem in LSC as the following one.

A A′ X

B B′ Y

p

∼

∼

∼

Then A′ and B′ will be fibrant in LSC especially S-local. We also decompose the morphism A′ → B′ as a
composition of a fibration and a trivial cofibration in LSC.

A A′ X

A C Y

B B′ Y

∼

∼ p

∼

∼

∼

Since A′ and C are S-local, by Lemma A.6.13 the S-equivalence A′ → C will be a weak equivalence in C.
Then A′ → C is a trivial cofibration in C. The lifting C → X exists. And moreover the lifting B → C exists
in the model category LSC. The composition gives a solution to the original lifting problem.
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[26] Alexander Grothendieck. À la Poursuite des Champs. English version: arXiv:2111.01000, 1983.

[27] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[28] Philip S. Hirschhorn. Model Categories and Their Localizations. Number 99. American Mathematical Soc.,
2003.

[29] Sharon Hollander. A homotopy theory for stacks, arXiv:math/0110247. Israel Journal of Mathematics,
163:93–124, 2008.

[30] Julian Holstein. Rational Homotopy Theory, master course in Hamburg, course page with lecture
notes.

[31] Mark Hovey. Model Categories. Number 63. American Mathematical Soc., 1999.

[32] Luc Illusie. Complexe Cotangent et Déformations I. Springer, 1971.
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